Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures
Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing...
Ausführliche Beschreibung
Autor*in: |
Dubus, Julien [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 30(2022), 1 vom: 02. Aug., Seite 1579-1594 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2022 ; number:1 ; day:02 ; month:08 ; pages:1579-1594 |
Links: |
---|
DOI / URN: |
10.1007/s11356-022-22321-4 |
---|
Katalog-ID: |
OLC2080232436 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080232436 | ||
003 | DE-627 | ||
005 | 20230606195407.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-022-22321-4 |2 doi | |
035 | |a (DE-627)OLC2080232436 | ||
035 | |a (DE-He213)s11356-022-22321-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Dubus, Julien |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. | ||
650 | 4 | |a Cesium | |
650 | 4 | |a Cation exchange | |
650 | 4 | |a Interlayer collapse | |
650 | 4 | |a Vermiculite | |
650 | 4 | |a Potassium | |
700 | 1 | |a Leonhardt, Nathalie |4 aut | |
700 | 1 | |a Latrille, Christelle |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 30(2022), 1 vom: 02. Aug., Seite 1579-1594 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2022 |g number:1 |g day:02 |g month:08 |g pages:1579-1594 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-022-22321-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 30 |j 2022 |e 1 |b 02 |c 08 |h 1579-1594 |
author_variant |
j d jd n l nl c l cl |
---|---|
matchkey_str |
article:09441344:2022----::utctoecagsnovdneimnptsimopinehnssnemc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11356-022-22321-4 doi (DE-627)OLC2080232436 (DE-He213)s11356-022-22321-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Dubus, Julien verfasserin aut Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. Cesium Cation exchange Interlayer collapse Vermiculite Potassium Leonhardt, Nathalie aut Latrille, Christelle aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 30(2022), 1 vom: 02. Aug., Seite 1579-1594 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 https://doi.org/10.1007/s11356-022-22321-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 30 2022 1 02 08 1579-1594 |
spelling |
10.1007/s11356-022-22321-4 doi (DE-627)OLC2080232436 (DE-He213)s11356-022-22321-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Dubus, Julien verfasserin aut Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. Cesium Cation exchange Interlayer collapse Vermiculite Potassium Leonhardt, Nathalie aut Latrille, Christelle aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 30(2022), 1 vom: 02. Aug., Seite 1579-1594 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 https://doi.org/10.1007/s11356-022-22321-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 30 2022 1 02 08 1579-1594 |
allfields_unstemmed |
10.1007/s11356-022-22321-4 doi (DE-627)OLC2080232436 (DE-He213)s11356-022-22321-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Dubus, Julien verfasserin aut Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. Cesium Cation exchange Interlayer collapse Vermiculite Potassium Leonhardt, Nathalie aut Latrille, Christelle aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 30(2022), 1 vom: 02. Aug., Seite 1579-1594 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 https://doi.org/10.1007/s11356-022-22321-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 30 2022 1 02 08 1579-1594 |
allfieldsGer |
10.1007/s11356-022-22321-4 doi (DE-627)OLC2080232436 (DE-He213)s11356-022-22321-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Dubus, Julien verfasserin aut Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. Cesium Cation exchange Interlayer collapse Vermiculite Potassium Leonhardt, Nathalie aut Latrille, Christelle aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 30(2022), 1 vom: 02. Aug., Seite 1579-1594 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 https://doi.org/10.1007/s11356-022-22321-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 30 2022 1 02 08 1579-1594 |
allfieldsSound |
10.1007/s11356-022-22321-4 doi (DE-627)OLC2080232436 (DE-He213)s11356-022-22321-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Dubus, Julien verfasserin aut Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. Cesium Cation exchange Interlayer collapse Vermiculite Potassium Leonhardt, Nathalie aut Latrille, Christelle aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 30(2022), 1 vom: 02. Aug., Seite 1579-1594 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 https://doi.org/10.1007/s11356-022-22321-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 30 2022 1 02 08 1579-1594 |
language |
English |
source |
Enthalten in Environmental science and pollution research 30(2022), 1 vom: 02. Aug., Seite 1579-1594 volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 |
sourceStr |
Enthalten in Environmental science and pollution research 30(2022), 1 vom: 02. Aug., Seite 1579-1594 volume:30 year:2022 number:1 day:02 month:08 pages:1579-1594 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cesium Cation exchange Interlayer collapse Vermiculite Potassium |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Dubus, Julien @@aut@@ Leonhardt, Nathalie @@aut@@ Latrille, Christelle @@aut@@ |
publishDateDaySort_date |
2022-08-02T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2080232436 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080232436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195407.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-022-22321-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080232436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-022-22321-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubus, Julien</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cesium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cation exchange</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interlayer collapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vermiculite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potassium</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leonhardt, Nathalie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Latrille, Christelle</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">30(2022), 1 vom: 02. Aug., Seite 1579-1594</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1579-1594</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-022-22321-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">08</subfield><subfield code="h">1579-1594</subfield></datafield></record></collection>
|
author |
Dubus, Julien |
spellingShingle |
Dubus, Julien ddc 570 ddc 690 fid BIODIV misc Cesium misc Cation exchange misc Interlayer collapse misc Vermiculite misc Potassium Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
authorStr |
Dubus, Julien |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures Cesium Cation exchange Interlayer collapse Vermiculite Potassium |
topic |
ddc 570 ddc 690 fid BIODIV misc Cesium misc Cation exchange misc Interlayer collapse misc Vermiculite misc Potassium |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Cesium misc Cation exchange misc Interlayer collapse misc Vermiculite misc Potassium |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Cesium misc Cation exchange misc Interlayer collapse misc Vermiculite misc Potassium |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
ctrlnum |
(DE-627)OLC2080232436 (DE-He213)s11356-022-22321-4-p |
title_full |
Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
author_sort |
Dubus, Julien |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1579 |
author_browse |
Dubus, Julien Leonhardt, Nathalie Latrille, Christelle |
container_volume |
30 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Dubus, Julien |
doi_str_mv |
10.1007/s11356-022-22321-4 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
title_auth |
Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
abstract |
Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures |
url |
https://doi.org/10.1007/s11356-022-22321-4 |
remote_bool |
false |
author2 |
Leonhardt, Nathalie Latrille, Christelle |
author2Str |
Leonhardt, Nathalie Latrille, Christelle |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-022-22321-4 |
up_date |
2024-07-04T03:17:07.769Z |
_version_ |
1803616809413246976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080232436</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195407.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-022-22321-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080232436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-022-22321-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubus, Julien</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Vermiculite and micaceous minerals are relevant $ Cs^{+} $ sorbents in soils and sediments. To understand the bioavailability of $ Cs^{+} $ in soils resulting from multi-cation exchanges, sorption of $ Cs^{+} $ onto clay minerals was performed in batch experiments with solutions containing $ Ca^{2+} $, $ Mg^{2+} $, and $ K^{+} $. A sequence between a vermiculite and various micaceous structures has been carried out by conditioning a vermiculite at various amounts of K. Competing cation exchanges were investigated as function of $ Cs^{+} $ concentration. The contribution of $ K^{+} $ on trace $ Cs^{+} $ desorption is probed by applying different concentrations of $ K^{+} $ on Cs-doped vermiculite and micaceous structures. Cs sorption isotherms at chemical equilibrium were combined with elemental mass balances in solution and structural analyses. $ Cs^{+} $ replaces easily $ Mg^{2+} $ > $ Ca^{2+} $ and competes scarcely with $ K^{+} $. $ Cs^{+} $ is strongly adsorbed on the various matrix, and a K/Cs ratio of about a thousand is required to remobilize $ Cs^{+} $. $ Cs^{+} $ is exchangeable as long as the clay interlayer space remains open to $ Ca^{2+} $. However, an excess of $ K^{+} $, as well as $ Cs^{+} $, in solution leads to the collapse of the interlayer spaces that locks the Cs into the structure. Once $ K^{+} $ and/or $ Cs^{+} $ collapse the interlayer space, the external sorption sites are then particularly involved in Cs sorption. Subsequently, $ Cs^{+} $ preferentially exchanges with $ Ca^{2+} $ rather than $ Mg^{2+} $. $ Mg^{2+} $ is extruded from the interlayer space by $ Cs^{+} $ and $ K^{+} $ adsorption, excluded from short interlayer space and replaced by $ Ca^{2+} $ as $ Cs^{+} $ desorbs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cesium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cation exchange</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interlayer collapse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vermiculite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potassium</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leonhardt, Nathalie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Latrille, Christelle</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">30(2022), 1 vom: 02. Aug., Seite 1579-1594</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1579-1594</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-022-22321-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">08</subfield><subfield code="h">1579-1594</subfield></datafield></record></collection>
|
score |
7.400342 |