How are alkali-activated materials impacted by incorporating low viscosity organic liquids?
Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low...
Ausführliche Beschreibung
Autor*in: |
Reeb, Charles [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to RILEM 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Materials and structures - Springer Netherlands, 1985, 56(2023), 1 vom: 09. Jan. |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2023 ; number:1 ; day:09 ; month:01 |
Links: |
---|
DOI / URN: |
10.1617/s11527-022-02089-2 |
---|
Katalog-ID: |
OLC2080267612 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080267612 | ||
003 | DE-627 | ||
005 | 20230506155926.0 | ||
007 | tu | ||
008 | 230131s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1617/s11527-022-02089-2 |2 doi | |
035 | |a (DE-627)OLC2080267612 | ||
035 | |a (DE-He213)s11527-022-02089-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Reeb, Charles |e verfasserin |4 aut | |
245 | 1 | 0 | |a How are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to RILEM 2022 | ||
520 | |a Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. | ||
650 | 4 | |a Alkali-activated materials (AAM) | |
650 | 4 | |a Geopolymer (GEO) | |
650 | 4 | |a Blast furnace slag (BFS) | |
650 | 4 | |a Surfactants | |
650 | 4 | |a Low viscosity oil | |
700 | 1 | |a Davy, Catherine A. |0 (orcid)0000-0001-8813-8749 |4 aut | |
700 | 1 | |a De Campos, Matthieu |4 aut | |
700 | 1 | |a Hosdez, Jérôme |4 aut | |
700 | 1 | |a Pierlot, Christel |4 aut | |
700 | 1 | |a Albert-Mercier, Cyrille |4 aut | |
700 | 1 | |a Lambertin, David |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials and structures |d Springer Netherlands, 1985 |g 56(2023), 1 vom: 09. Jan. |w (DE-627)12938240X |w (DE-600)165630-2 |w (DE-576)014768240 |x 1359-5997 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2023 |g number:1 |g day:09 |g month:01 |
856 | 4 | 1 | |u https://doi.org/10.1617/s11527-022-02089-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_2016 | ||
951 | |a AR | ||
952 | |d 56 |j 2023 |e 1 |b 09 |c 01 |
author_variant |
c r cr c a d ca cad c m d cm cmd j h jh c p cp c a m cam d l dl |
---|---|
matchkey_str |
article:13595997:2023----::oaelaiciaemtrasmatdynoprtnlw |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1617/s11527-022-02089-2 doi (DE-627)OLC2080267612 (DE-He213)s11527-022-02089-2-p DE-627 ger DE-627 rakwb eng 690 VZ Reeb, Charles verfasserin aut How are alkali-activated materials impacted by incorporating low viscosity organic liquids? 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to RILEM 2022 Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil Davy, Catherine A. (orcid)0000-0001-8813-8749 aut De Campos, Matthieu aut Hosdez, Jérôme aut Pierlot, Christel aut Albert-Mercier, Cyrille aut Lambertin, David aut Enthalten in Materials and structures Springer Netherlands, 1985 56(2023), 1 vom: 09. Jan. (DE-627)12938240X (DE-600)165630-2 (DE-576)014768240 1359-5997 nnns volume:56 year:2023 number:1 day:09 month:01 https://doi.org/10.1617/s11527-022-02089-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_2016 AR 56 2023 1 09 01 |
spelling |
10.1617/s11527-022-02089-2 doi (DE-627)OLC2080267612 (DE-He213)s11527-022-02089-2-p DE-627 ger DE-627 rakwb eng 690 VZ Reeb, Charles verfasserin aut How are alkali-activated materials impacted by incorporating low viscosity organic liquids? 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to RILEM 2022 Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil Davy, Catherine A. (orcid)0000-0001-8813-8749 aut De Campos, Matthieu aut Hosdez, Jérôme aut Pierlot, Christel aut Albert-Mercier, Cyrille aut Lambertin, David aut Enthalten in Materials and structures Springer Netherlands, 1985 56(2023), 1 vom: 09. Jan. (DE-627)12938240X (DE-600)165630-2 (DE-576)014768240 1359-5997 nnns volume:56 year:2023 number:1 day:09 month:01 https://doi.org/10.1617/s11527-022-02089-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_2016 AR 56 2023 1 09 01 |
allfields_unstemmed |
10.1617/s11527-022-02089-2 doi (DE-627)OLC2080267612 (DE-He213)s11527-022-02089-2-p DE-627 ger DE-627 rakwb eng 690 VZ Reeb, Charles verfasserin aut How are alkali-activated materials impacted by incorporating low viscosity organic liquids? 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to RILEM 2022 Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil Davy, Catherine A. (orcid)0000-0001-8813-8749 aut De Campos, Matthieu aut Hosdez, Jérôme aut Pierlot, Christel aut Albert-Mercier, Cyrille aut Lambertin, David aut Enthalten in Materials and structures Springer Netherlands, 1985 56(2023), 1 vom: 09. Jan. (DE-627)12938240X (DE-600)165630-2 (DE-576)014768240 1359-5997 nnns volume:56 year:2023 number:1 day:09 month:01 https://doi.org/10.1617/s11527-022-02089-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_2016 AR 56 2023 1 09 01 |
allfieldsGer |
10.1617/s11527-022-02089-2 doi (DE-627)OLC2080267612 (DE-He213)s11527-022-02089-2-p DE-627 ger DE-627 rakwb eng 690 VZ Reeb, Charles verfasserin aut How are alkali-activated materials impacted by incorporating low viscosity organic liquids? 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to RILEM 2022 Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil Davy, Catherine A. (orcid)0000-0001-8813-8749 aut De Campos, Matthieu aut Hosdez, Jérôme aut Pierlot, Christel aut Albert-Mercier, Cyrille aut Lambertin, David aut Enthalten in Materials and structures Springer Netherlands, 1985 56(2023), 1 vom: 09. Jan. (DE-627)12938240X (DE-600)165630-2 (DE-576)014768240 1359-5997 nnns volume:56 year:2023 number:1 day:09 month:01 https://doi.org/10.1617/s11527-022-02089-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_2016 AR 56 2023 1 09 01 |
allfieldsSound |
10.1617/s11527-022-02089-2 doi (DE-627)OLC2080267612 (DE-He213)s11527-022-02089-2-p DE-627 ger DE-627 rakwb eng 690 VZ Reeb, Charles verfasserin aut How are alkali-activated materials impacted by incorporating low viscosity organic liquids? 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to RILEM 2022 Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil Davy, Catherine A. (orcid)0000-0001-8813-8749 aut De Campos, Matthieu aut Hosdez, Jérôme aut Pierlot, Christel aut Albert-Mercier, Cyrille aut Lambertin, David aut Enthalten in Materials and structures Springer Netherlands, 1985 56(2023), 1 vom: 09. Jan. (DE-627)12938240X (DE-600)165630-2 (DE-576)014768240 1359-5997 nnns volume:56 year:2023 number:1 day:09 month:01 https://doi.org/10.1617/s11527-022-02089-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_2016 AR 56 2023 1 09 01 |
language |
English |
source |
Enthalten in Materials and structures 56(2023), 1 vom: 09. Jan. volume:56 year:2023 number:1 day:09 month:01 |
sourceStr |
Enthalten in Materials and structures 56(2023), 1 vom: 09. Jan. volume:56 year:2023 number:1 day:09 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Materials and structures |
authorswithroles_txt_mv |
Reeb, Charles @@aut@@ Davy, Catherine A. @@aut@@ De Campos, Matthieu @@aut@@ Hosdez, Jérôme @@aut@@ Pierlot, Christel @@aut@@ Albert-Mercier, Cyrille @@aut@@ Lambertin, David @@aut@@ |
publishDateDaySort_date |
2023-01-09T00:00:00Z |
hierarchy_top_id |
12938240X |
dewey-sort |
3690 |
id |
OLC2080267612 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080267612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506155926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1617/s11527-022-02089-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080267612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11527-022-02089-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reeb, Charles</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How are alkali-activated materials impacted by incorporating low viscosity organic liquids?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to RILEM 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkali-activated materials (AAM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geopolymer (GEO)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blast furnace slag (BFS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfactants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low viscosity oil</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davy, Catherine A.</subfield><subfield code="0">(orcid)0000-0001-8813-8749</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Campos, Matthieu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hosdez, Jérôme</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pierlot, Christel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albert-Mercier, Cyrille</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lambertin, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials and structures</subfield><subfield code="d">Springer Netherlands, 1985</subfield><subfield code="g">56(2023), 1 vom: 09. Jan.</subfield><subfield code="w">(DE-627)12938240X</subfield><subfield code="w">(DE-600)165630-2</subfield><subfield code="w">(DE-576)014768240</subfield><subfield code="x">1359-5997</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1617/s11527-022-02089-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Reeb, Charles |
spellingShingle |
Reeb, Charles ddc 690 misc Alkali-activated materials (AAM) misc Geopolymer (GEO) misc Blast furnace slag (BFS) misc Surfactants misc Low viscosity oil How are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
authorStr |
Reeb, Charles |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12938240X |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1359-5997 |
topic_title |
690 VZ How are alkali-activated materials impacted by incorporating low viscosity organic liquids? Alkali-activated materials (AAM) Geopolymer (GEO) Blast furnace slag (BFS) Surfactants Low viscosity oil |
topic |
ddc 690 misc Alkali-activated materials (AAM) misc Geopolymer (GEO) misc Blast furnace slag (BFS) misc Surfactants misc Low viscosity oil |
topic_unstemmed |
ddc 690 misc Alkali-activated materials (AAM) misc Geopolymer (GEO) misc Blast furnace slag (BFS) misc Surfactants misc Low viscosity oil |
topic_browse |
ddc 690 misc Alkali-activated materials (AAM) misc Geopolymer (GEO) misc Blast furnace slag (BFS) misc Surfactants misc Low viscosity oil |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Materials and structures |
hierarchy_parent_id |
12938240X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Materials and structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12938240X (DE-600)165630-2 (DE-576)014768240 |
title |
How are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
ctrlnum |
(DE-627)OLC2080267612 (DE-He213)s11527-022-02089-2-p |
title_full |
How are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
author_sort |
Reeb, Charles |
journal |
Materials and structures |
journalStr |
Materials and structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Reeb, Charles Davy, Catherine A. De Campos, Matthieu Hosdez, Jérôme Pierlot, Christel Albert-Mercier, Cyrille Lambertin, David |
container_volume |
56 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Reeb, Charles |
doi_str_mv |
10.1617/s11527-022-02089-2 |
normlink |
(ORCID)0000-0001-8813-8749 |
normlink_prefix_str_mv |
(orcid)0000-0001-8813-8749 |
dewey-full |
690 |
title_sort |
how are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
title_auth |
How are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
abstract |
Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. © The Author(s), under exclusive licence to RILEM 2022 |
abstractGer |
Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. © The Author(s), under exclusive licence to RILEM 2022 |
abstract_unstemmed |
Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles. © The Author(s), under exclusive licence to RILEM 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_2016 |
container_issue |
1 |
title_short |
How are alkali-activated materials impacted by incorporating low viscosity organic liquids? |
url |
https://doi.org/10.1617/s11527-022-02089-2 |
remote_bool |
false |
author2 |
Davy, Catherine A. De Campos, Matthieu Hosdez, Jérôme Pierlot, Christel Albert-Mercier, Cyrille Lambertin, David |
author2Str |
Davy, Catherine A. De Campos, Matthieu Hosdez, Jérôme Pierlot, Christel Albert-Mercier, Cyrille Lambertin, David |
ppnlink |
12938240X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1617/s11527-022-02089-2 |
up_date |
2024-07-04T03:23:16.057Z |
_version_ |
1803617195600642048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080267612</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506155926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1617/s11527-022-02089-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080267612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11527-022-02089-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reeb, Charles</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How are alkali-activated materials impacted by incorporating low viscosity organic liquids?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to RILEM 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This research determines an adequate alkali-activated material (AAM) for the incorporation of huge amounts (20 or 40% vol) of low viscosity organic liquids (LVOL), e.g. for waste stabilization/solidification. The selected AAM are either based on high-Ca content blast furnace slag, or on low Ca-content metakaolin, i.e. on a geopolymer matrix. First, the selection of the AAM is performed to ensure no LVOL leakage and a sufficient compressive strength fc (> 8 MPa). Surfactants are compulsory to allow incorporation. After 90 days curing, for slag pastes, fc ranges between 10 and 20 MPa at 20% vol LVOL, but it is zero at 40% LVOL, whatever the surfactant. For geopolymer pastes, the AAM-LVOL composites have an average fc of 25 MPa at 20% vol LVOL, and of 15 MPa at 40% LVOL. With surfactant, the AAM solid pore structure of slag pastes is denser (with smaller specific surface area and micropore amount); it is unchanged for geopolymer pastes. Whatever the surfactant, air entrained bubbles are present. Their proportion is maximal with Glucopon. Together with LVOL presence, this generally contributes to decreasing fc. The emulsion (entrained air + LVOL droplets) is characterized in hardened AAM by combining 2D Scanning Electron Microscopy and 3D X Ray micro-computed tomography. Surfactants significantly decrease the emulsion droplet size distribution. For geopolymer pastes up to 40% vol LVOL, the most adequate surfactants are Brij O10 and CTAB; for slag paste up to 20% vol LVOL, it is CTAB. Moreover, the setting reactions are not impacted by LVOL or surfactants, and neither are the reaction products. It is concluded that the decrease in mechanical performance of AAM-LVOL composites is only due to physical reasons, particularly the decrease in AAM proportion, the emulsion quality (coalescence, droplet size and shape) and air entrained bubbles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkali-activated materials (AAM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geopolymer (GEO)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blast furnace slag (BFS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfactants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low viscosity oil</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davy, Catherine A.</subfield><subfield code="0">(orcid)0000-0001-8813-8749</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Campos, Matthieu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hosdez, Jérôme</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pierlot, Christel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albert-Mercier, Cyrille</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lambertin, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials and structures</subfield><subfield code="d">Springer Netherlands, 1985</subfield><subfield code="g">56(2023), 1 vom: 09. Jan.</subfield><subfield code="w">(DE-627)12938240X</subfield><subfield code="w">(DE-600)165630-2</subfield><subfield code="w">(DE-576)014768240</subfield><subfield code="x">1359-5997</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1617/s11527-022-02089-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.4016323 |