Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators
Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm...
Ausführliche Beschreibung
Autor*in: |
Gal, Sorin G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Mediterranean journal of mathematics - Springer International Publishing, 2004, 20(2023), 2 vom: 13. Jan. |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2023 ; number:2 ; day:13 ; month:01 |
Links: |
---|
DOI / URN: |
10.1007/s00009-023-02271-y |
---|
Katalog-ID: |
OLC2080300067 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080300067 | ||
003 | DE-627 | ||
005 | 20230506161510.0 | ||
007 | tu | ||
008 | 230131s2023 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00009-023-02271-y |2 doi | |
035 | |a (DE-627)OLC2080300067 | ||
035 | |a (DE-He213)s00009-023-02271-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Gal, Sorin G. |e verfasserin |0 (orcid)0000-0002-5743-3144 |4 aut | |
245 | 1 | 0 | |a Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. | ||
650 | 4 | |a Korovkin-type theorems | |
650 | 4 | |a monotone operator | |
650 | 4 | |a sublinear operator | |
650 | 4 | |a convergence almost everywhere | |
650 | 4 | |a convergence in measure | |
650 | 4 | |a convergence in | |
650 | 4 | |a -norm | |
650 | 4 | |a choquet’s integral | |
700 | 1 | |a Niculescu, Constantin P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mediterranean journal of mathematics |d Springer International Publishing, 2004 |g 20(2023), 2 vom: 13. Jan. |w (DE-627)389869848 |w (DE-600)2149653-5 |w (DE-576)12119308X |x 1660-5446 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2023 |g number:2 |g day:13 |g month:01 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00009-023-02271-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 20 |j 2023 |e 2 |b 13 |c 01 |
author_variant |
s g g sg sgg c p n cp cpn |
---|---|
matchkey_str |
article:16605446:2023----::ooknyehoesowalnniernm |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00009-023-02271-y doi (DE-627)OLC2080300067 (DE-He213)s00009-023-02271-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gal, Sorin G. verfasserin (orcid)0000-0002-5743-3144 aut Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral Niculescu, Constantin P. aut Enthalten in Mediterranean journal of mathematics Springer International Publishing, 2004 20(2023), 2 vom: 13. Jan. (DE-627)389869848 (DE-600)2149653-5 (DE-576)12119308X 1660-5446 nnns volume:20 year:2023 number:2 day:13 month:01 https://doi.org/10.1007/s00009-023-02271-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 20 2023 2 13 01 |
spelling |
10.1007/s00009-023-02271-y doi (DE-627)OLC2080300067 (DE-He213)s00009-023-02271-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gal, Sorin G. verfasserin (orcid)0000-0002-5743-3144 aut Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral Niculescu, Constantin P. aut Enthalten in Mediterranean journal of mathematics Springer International Publishing, 2004 20(2023), 2 vom: 13. Jan. (DE-627)389869848 (DE-600)2149653-5 (DE-576)12119308X 1660-5446 nnns volume:20 year:2023 number:2 day:13 month:01 https://doi.org/10.1007/s00009-023-02271-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 20 2023 2 13 01 |
allfields_unstemmed |
10.1007/s00009-023-02271-y doi (DE-627)OLC2080300067 (DE-He213)s00009-023-02271-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gal, Sorin G. verfasserin (orcid)0000-0002-5743-3144 aut Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral Niculescu, Constantin P. aut Enthalten in Mediterranean journal of mathematics Springer International Publishing, 2004 20(2023), 2 vom: 13. Jan. (DE-627)389869848 (DE-600)2149653-5 (DE-576)12119308X 1660-5446 nnns volume:20 year:2023 number:2 day:13 month:01 https://doi.org/10.1007/s00009-023-02271-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 20 2023 2 13 01 |
allfieldsGer |
10.1007/s00009-023-02271-y doi (DE-627)OLC2080300067 (DE-He213)s00009-023-02271-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gal, Sorin G. verfasserin (orcid)0000-0002-5743-3144 aut Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral Niculescu, Constantin P. aut Enthalten in Mediterranean journal of mathematics Springer International Publishing, 2004 20(2023), 2 vom: 13. Jan. (DE-627)389869848 (DE-600)2149653-5 (DE-576)12119308X 1660-5446 nnns volume:20 year:2023 number:2 day:13 month:01 https://doi.org/10.1007/s00009-023-02271-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 20 2023 2 13 01 |
allfieldsSound |
10.1007/s00009-023-02271-y doi (DE-627)OLC2080300067 (DE-He213)s00009-023-02271-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gal, Sorin G. verfasserin (orcid)0000-0002-5743-3144 aut Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators 2023 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral Niculescu, Constantin P. aut Enthalten in Mediterranean journal of mathematics Springer International Publishing, 2004 20(2023), 2 vom: 13. Jan. (DE-627)389869848 (DE-600)2149653-5 (DE-576)12119308X 1660-5446 nnns volume:20 year:2023 number:2 day:13 month:01 https://doi.org/10.1007/s00009-023-02271-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 20 2023 2 13 01 |
language |
English |
source |
Enthalten in Mediterranean journal of mathematics 20(2023), 2 vom: 13. Jan. volume:20 year:2023 number:2 day:13 month:01 |
sourceStr |
Enthalten in Mediterranean journal of mathematics 20(2023), 2 vom: 13. Jan. volume:20 year:2023 number:2 day:13 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mediterranean journal of mathematics |
authorswithroles_txt_mv |
Gal, Sorin G. @@aut@@ Niculescu, Constantin P. @@aut@@ |
publishDateDaySort_date |
2023-01-13T00:00:00Z |
hierarchy_top_id |
389869848 |
dewey-sort |
3510 |
id |
OLC2080300067 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080300067</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506161510.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00009-023-02271-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080300067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00009-023-02271-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gal, Sorin G.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5743-3144</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Korovkin-type theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monotone operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sublinear operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence almost everywhere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence in measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence in</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-norm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">choquet’s integral</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niculescu, Constantin P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mediterranean journal of mathematics</subfield><subfield code="d">Springer International Publishing, 2004</subfield><subfield code="g">20(2023), 2 vom: 13. Jan.</subfield><subfield code="w">(DE-627)389869848</subfield><subfield code="w">(DE-600)2149653-5</subfield><subfield code="w">(DE-576)12119308X</subfield><subfield code="x">1660-5446</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:13</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00009-023-02271-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">13</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Gal, Sorin G. |
spellingShingle |
Gal, Sorin G. ddc 510 ssgn 17,1 misc Korovkin-type theorems misc monotone operator misc sublinear operator misc convergence almost everywhere misc convergence in measure misc convergence in misc -norm misc choquet’s integral Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators |
authorStr |
Gal, Sorin G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)389869848 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1660-5446 |
topic_title |
510 VZ 17,1 ssgn Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators Korovkin-type theorems monotone operator sublinear operator convergence almost everywhere convergence in measure convergence in -norm choquet’s integral |
topic |
ddc 510 ssgn 17,1 misc Korovkin-type theorems misc monotone operator misc sublinear operator misc convergence almost everywhere misc convergence in measure misc convergence in misc -norm misc choquet’s integral |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Korovkin-type theorems misc monotone operator misc sublinear operator misc convergence almost everywhere misc convergence in measure misc convergence in misc -norm misc choquet’s integral |
topic_browse |
ddc 510 ssgn 17,1 misc Korovkin-type theorems misc monotone operator misc sublinear operator misc convergence almost everywhere misc convergence in measure misc convergence in misc -norm misc choquet’s integral |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mediterranean journal of mathematics |
hierarchy_parent_id |
389869848 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mediterranean journal of mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)389869848 (DE-600)2149653-5 (DE-576)12119308X |
title |
Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators |
ctrlnum |
(DE-627)OLC2080300067 (DE-He213)s00009-023-02271-y-p |
title_full |
Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators |
author_sort |
Gal, Sorin G. |
journal |
Mediterranean journal of mathematics |
journalStr |
Mediterranean journal of mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Gal, Sorin G. Niculescu, Constantin P. |
container_volume |
20 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Gal, Sorin G. |
doi_str_mv |
10.1007/s00009-023-02271-y |
normlink |
(ORCID)0000-0002-5743-3144 |
normlink_prefix_str_mv |
(orcid)0000-0002-5743-3144 |
dewey-full |
510 |
title_sort |
korovkin-type theorems for weakly nonlinear and monotone operators |
title_auth |
Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators |
abstract |
Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 |
container_issue |
2 |
title_short |
Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators |
url |
https://doi.org/10.1007/s00009-023-02271-y |
remote_bool |
false |
author2 |
Niculescu, Constantin P. |
author2Str |
Niculescu, Constantin P. |
ppnlink |
389869848 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00009-023-02271-y |
up_date |
2024-07-04T03:28:25.779Z |
_version_ |
1803617520351969280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080300067</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506161510.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2023 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00009-023-02271-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080300067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00009-023-02271-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gal, Sorin G.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5743-3144</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Korovkin-Type Theorems for Weakly Nonlinear and Monotone Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we prove analogs of Korovkin’s theorem in the context of weakly nonlinear and monotone operators acting on Banach lattices of functions of several variables. Our results concern the convergence almost everywhere, the convergence in measure and the convergence in $$L^{p}$$-norm. Several results illustrating the theory are also included.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Korovkin-type theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monotone operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sublinear operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence almost everywhere</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence in measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence in</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-norm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">choquet’s integral</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niculescu, Constantin P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mediterranean journal of mathematics</subfield><subfield code="d">Springer International Publishing, 2004</subfield><subfield code="g">20(2023), 2 vom: 13. Jan.</subfield><subfield code="w">(DE-627)389869848</subfield><subfield code="w">(DE-600)2149653-5</subfield><subfield code="w">(DE-576)12119308X</subfield><subfield code="x">1660-5446</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:13</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00009-023-02271-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">13</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.400943 |