Stability analysis of FD-BPM applied in high power semiconductor laser models
Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamenta...
Ausführliche Beschreibung
Autor*in: |
Sujecki, S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Optical and quantum electronics - Springer US, 1975, 47(2014), 6 vom: 14. Dez., Seite 1415-1419 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2014 ; number:6 ; day:14 ; month:12 ; pages:1415-1419 |
Links: |
---|
DOI / URN: |
10.1007/s11082-014-0101-2 |
---|
Katalog-ID: |
OLC2081993945 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2081993945 | ||
003 | DE-627 | ||
005 | 20230503233909.0 | ||
007 | tu | ||
008 | 230228s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11082-014-0101-2 |2 doi | |
035 | |a (DE-627)OLC2081993945 | ||
035 | |a (DE-He213)s11082-014-0101-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 620 |q VZ |
100 | 1 | |a Sujecki, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability analysis of FD-BPM applied in high power semiconductor laser models |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. | ||
650 | 4 | |a Semiconductor lasers | |
650 | 4 | |a Finite difference method | |
650 | 4 | |a Semiconductor laser modelling | |
773 | 0 | 8 | |i Enthalten in |t Optical and quantum electronics |d Springer US, 1975 |g 47(2014), 6 vom: 14. Dez., Seite 1415-1419 |w (DE-627)129419540 |w (DE-600)189950-8 |w (DE-576)014796139 |x 0306-8919 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2014 |g number:6 |g day:14 |g month:12 |g pages:1415-1419 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11082-014-0101-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
951 | |a AR | ||
952 | |d 47 |j 2014 |e 6 |b 14 |c 12 |h 1415-1419 |
author_variant |
s s ss |
---|---|
matchkey_str |
article:03068919:2014----::tbltaayiofbmpleihgpwreio |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11082-014-0101-2 doi (DE-627)OLC2081993945 (DE-He213)s11082-014-0101-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Sujecki, S. verfasserin aut Stability analysis of FD-BPM applied in high power semiconductor laser models 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. Semiconductor lasers Finite difference method Semiconductor laser modelling Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 14. Dez., Seite 1415-1419 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 https://doi.org/10.1007/s11082-014-0101-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 14 12 1415-1419 |
spelling |
10.1007/s11082-014-0101-2 doi (DE-627)OLC2081993945 (DE-He213)s11082-014-0101-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Sujecki, S. verfasserin aut Stability analysis of FD-BPM applied in high power semiconductor laser models 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. Semiconductor lasers Finite difference method Semiconductor laser modelling Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 14. Dez., Seite 1415-1419 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 https://doi.org/10.1007/s11082-014-0101-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 14 12 1415-1419 |
allfields_unstemmed |
10.1007/s11082-014-0101-2 doi (DE-627)OLC2081993945 (DE-He213)s11082-014-0101-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Sujecki, S. verfasserin aut Stability analysis of FD-BPM applied in high power semiconductor laser models 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. Semiconductor lasers Finite difference method Semiconductor laser modelling Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 14. Dez., Seite 1415-1419 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 https://doi.org/10.1007/s11082-014-0101-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 14 12 1415-1419 |
allfieldsGer |
10.1007/s11082-014-0101-2 doi (DE-627)OLC2081993945 (DE-He213)s11082-014-0101-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Sujecki, S. verfasserin aut Stability analysis of FD-BPM applied in high power semiconductor laser models 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. Semiconductor lasers Finite difference method Semiconductor laser modelling Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 14. Dez., Seite 1415-1419 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 https://doi.org/10.1007/s11082-014-0101-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 14 12 1415-1419 |
allfieldsSound |
10.1007/s11082-014-0101-2 doi (DE-627)OLC2081993945 (DE-He213)s11082-014-0101-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Sujecki, S. verfasserin aut Stability analysis of FD-BPM applied in high power semiconductor laser models 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. Semiconductor lasers Finite difference method Semiconductor laser modelling Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 14. Dez., Seite 1415-1419 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 https://doi.org/10.1007/s11082-014-0101-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 14 12 1415-1419 |
language |
English |
source |
Enthalten in Optical and quantum electronics 47(2014), 6 vom: 14. Dez., Seite 1415-1419 volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 |
sourceStr |
Enthalten in Optical and quantum electronics 47(2014), 6 vom: 14. Dez., Seite 1415-1419 volume:47 year:2014 number:6 day:14 month:12 pages:1415-1419 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Semiconductor lasers Finite difference method Semiconductor laser modelling |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Optical and quantum electronics |
authorswithroles_txt_mv |
Sujecki, S. @@aut@@ |
publishDateDaySort_date |
2014-12-14T00:00:00Z |
hierarchy_top_id |
129419540 |
dewey-sort |
3500 |
id |
OLC2081993945 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2081993945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503233909.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230228s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-014-0101-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2081993945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-014-0101-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sujecki, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of FD-BPM applied in high power semiconductor laser models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite difference method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor laser modelling</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">47(2014), 6 vom: 14. Dez., Seite 1415-1419</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1415-1419</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-014-0101-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield><subfield code="h">1415-1419</subfield></datafield></record></collection>
|
author |
Sujecki, S. |
spellingShingle |
Sujecki, S. ddc 500 misc Semiconductor lasers misc Finite difference method misc Semiconductor laser modelling Stability analysis of FD-BPM applied in high power semiconductor laser models |
authorStr |
Sujecki, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129419540 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0306-8919 |
topic_title |
500 620 VZ Stability analysis of FD-BPM applied in high power semiconductor laser models Semiconductor lasers Finite difference method Semiconductor laser modelling |
topic |
ddc 500 misc Semiconductor lasers misc Finite difference method misc Semiconductor laser modelling |
topic_unstemmed |
ddc 500 misc Semiconductor lasers misc Finite difference method misc Semiconductor laser modelling |
topic_browse |
ddc 500 misc Semiconductor lasers misc Finite difference method misc Semiconductor laser modelling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optical and quantum electronics |
hierarchy_parent_id |
129419540 |
dewey-tens |
500 - Science 620 - Engineering |
hierarchy_top_title |
Optical and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 |
title |
Stability analysis of FD-BPM applied in high power semiconductor laser models |
ctrlnum |
(DE-627)OLC2081993945 (DE-He213)s11082-014-0101-2-p |
title_full |
Stability analysis of FD-BPM applied in high power semiconductor laser models |
author_sort |
Sujecki, S. |
journal |
Optical and quantum electronics |
journalStr |
Optical and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1415 |
author_browse |
Sujecki, S. |
container_volume |
47 |
class |
500 620 VZ |
format_se |
Aufsätze |
author-letter |
Sujecki, S. |
doi_str_mv |
10.1007/s11082-014-0101-2 |
dewey-full |
500 620 |
title_sort |
stability analysis of fd-bpm applied in high power semiconductor laser models |
title_auth |
Stability analysis of FD-BPM applied in high power semiconductor laser models |
abstract |
Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 |
container_issue |
6 |
title_short |
Stability analysis of FD-BPM applied in high power semiconductor laser models |
url |
https://doi.org/10.1007/s11082-014-0101-2 |
remote_bool |
false |
ppnlink |
129419540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11082-014-0101-2 |
up_date |
2024-07-04T09:25:55.591Z |
_version_ |
1803640012111085569 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2081993945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503233909.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230228s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-014-0101-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2081993945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-014-0101-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sujecki, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability analysis of FD-BPM applied in high power semiconductor laser models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We perform a stability analysis of the Crank-Nicolson based finite difference beam propagation algorithm for a medium with a complex refractive index distribution. We use typical waveguide parameters that correspond to an InGaAs–AlGaAs epitaxy. The results show that selecting the fundamental mode propagation constant as the BPM reference value, even though it allows reducing the errors, makes the FD-BPM scheme unstable when attempting to retrace the propagation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite difference method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductor laser modelling</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">47(2014), 6 vom: 14. Dez., Seite 1415-1419</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1415-1419</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-014-0101-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield><subfield code="h">1415-1419</subfield></datafield></record></collection>
|
score |
7.401127 |