On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement
Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positi...
Ausführliche Beschreibung
Autor*in: |
Koprucki, Thomas [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Optical and quantum electronics - Springer US, 1975, 47(2014), 6 vom: 30. Okt., Seite 1327-1332 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2014 ; number:6 ; day:30 ; month:10 ; pages:1327-1332 |
Links: |
---|
DOI / URN: |
10.1007/s11082-014-0050-9 |
---|
Katalog-ID: |
OLC2081994380 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2081994380 | ||
003 | DE-627 | ||
005 | 20230503233912.0 | ||
007 | tu | ||
008 | 230228s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11082-014-0050-9 |2 doi | |
035 | |a (DE-627)OLC2081994380 | ||
035 | |a (DE-He213)s11082-014-0050-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 620 |q VZ |
100 | 1 | |a Koprucki, Thomas |e verfasserin |4 aut | |
245 | 1 | 0 | |a On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. | ||
650 | 4 | |a Scharfetter–Gummel scheme | |
650 | 4 | |a Thermodynamic consistency | |
700 | 1 | |a Rotundo, Nella |4 aut | |
700 | 1 | |a Farrell, Patricio |4 aut | |
700 | 1 | |a Doan, Duy Hai |4 aut | |
700 | 1 | |a Fuhrmann, Jürgen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical and quantum electronics |d Springer US, 1975 |g 47(2014), 6 vom: 30. Okt., Seite 1327-1332 |w (DE-627)129419540 |w (DE-600)189950-8 |w (DE-576)014796139 |x 0306-8919 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2014 |g number:6 |g day:30 |g month:10 |g pages:1327-1332 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11082-014-0050-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
951 | |a AR | ||
952 | |d 47 |j 2014 |e 6 |b 30 |c 10 |h 1327-1332 |
author_variant |
t k tk n r nr p f pf d h d dh dhd j f jf |
---|---|
matchkey_str |
article:03068919:2014----::nhroyaicnitnyfshretrumlceeaeoaoiidhravlaeoditifso |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11082-014-0050-9 doi (DE-627)OLC2081994380 (DE-He213)s11082-014-0050-9-p DE-627 ger DE-627 rakwb eng 500 620 VZ Koprucki, Thomas verfasserin aut On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. Scharfetter–Gummel scheme Thermodynamic consistency Rotundo, Nella aut Farrell, Patricio aut Doan, Duy Hai aut Fuhrmann, Jürgen aut Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 30. Okt., Seite 1327-1332 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 https://doi.org/10.1007/s11082-014-0050-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 30 10 1327-1332 |
spelling |
10.1007/s11082-014-0050-9 doi (DE-627)OLC2081994380 (DE-He213)s11082-014-0050-9-p DE-627 ger DE-627 rakwb eng 500 620 VZ Koprucki, Thomas verfasserin aut On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. Scharfetter–Gummel scheme Thermodynamic consistency Rotundo, Nella aut Farrell, Patricio aut Doan, Duy Hai aut Fuhrmann, Jürgen aut Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 30. Okt., Seite 1327-1332 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 https://doi.org/10.1007/s11082-014-0050-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 30 10 1327-1332 |
allfields_unstemmed |
10.1007/s11082-014-0050-9 doi (DE-627)OLC2081994380 (DE-He213)s11082-014-0050-9-p DE-627 ger DE-627 rakwb eng 500 620 VZ Koprucki, Thomas verfasserin aut On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. Scharfetter–Gummel scheme Thermodynamic consistency Rotundo, Nella aut Farrell, Patricio aut Doan, Duy Hai aut Fuhrmann, Jürgen aut Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 30. Okt., Seite 1327-1332 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 https://doi.org/10.1007/s11082-014-0050-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 30 10 1327-1332 |
allfieldsGer |
10.1007/s11082-014-0050-9 doi (DE-627)OLC2081994380 (DE-He213)s11082-014-0050-9-p DE-627 ger DE-627 rakwb eng 500 620 VZ Koprucki, Thomas verfasserin aut On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. Scharfetter–Gummel scheme Thermodynamic consistency Rotundo, Nella aut Farrell, Patricio aut Doan, Duy Hai aut Fuhrmann, Jürgen aut Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 30. Okt., Seite 1327-1332 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 https://doi.org/10.1007/s11082-014-0050-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 30 10 1327-1332 |
allfieldsSound |
10.1007/s11082-014-0050-9 doi (DE-627)OLC2081994380 (DE-He213)s11082-014-0050-9-p DE-627 ger DE-627 rakwb eng 500 620 VZ Koprucki, Thomas verfasserin aut On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. Scharfetter–Gummel scheme Thermodynamic consistency Rotundo, Nella aut Farrell, Patricio aut Doan, Duy Hai aut Fuhrmann, Jürgen aut Enthalten in Optical and quantum electronics Springer US, 1975 47(2014), 6 vom: 30. Okt., Seite 1327-1332 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 https://doi.org/10.1007/s11082-014-0050-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 AR 47 2014 6 30 10 1327-1332 |
language |
English |
source |
Enthalten in Optical and quantum electronics 47(2014), 6 vom: 30. Okt., Seite 1327-1332 volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 |
sourceStr |
Enthalten in Optical and quantum electronics 47(2014), 6 vom: 30. Okt., Seite 1327-1332 volume:47 year:2014 number:6 day:30 month:10 pages:1327-1332 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Scharfetter–Gummel scheme Thermodynamic consistency |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Optical and quantum electronics |
authorswithroles_txt_mv |
Koprucki, Thomas @@aut@@ Rotundo, Nella @@aut@@ Farrell, Patricio @@aut@@ Doan, Duy Hai @@aut@@ Fuhrmann, Jürgen @@aut@@ |
publishDateDaySort_date |
2014-10-30T00:00:00Z |
hierarchy_top_id |
129419540 |
dewey-sort |
3500 |
id |
OLC2081994380 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2081994380</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503233912.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230228s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-014-0050-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2081994380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-014-0050-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koprucki, Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scharfetter–Gummel scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic consistency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rotundo, Nella</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farrell, Patricio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doan, Duy Hai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuhrmann, Jürgen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">47(2014), 6 vom: 30. Okt., Seite 1327-1332</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1327-1332</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-014-0050-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">1327-1332</subfield></datafield></record></collection>
|
author |
Koprucki, Thomas |
spellingShingle |
Koprucki, Thomas ddc 500 misc Scharfetter–Gummel scheme misc Thermodynamic consistency On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
authorStr |
Koprucki, Thomas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129419540 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0306-8919 |
topic_title |
500 620 VZ On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement Scharfetter–Gummel scheme Thermodynamic consistency |
topic |
ddc 500 misc Scharfetter–Gummel scheme misc Thermodynamic consistency |
topic_unstemmed |
ddc 500 misc Scharfetter–Gummel scheme misc Thermodynamic consistency |
topic_browse |
ddc 500 misc Scharfetter–Gummel scheme misc Thermodynamic consistency |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optical and quantum electronics |
hierarchy_parent_id |
129419540 |
dewey-tens |
500 - Science 620 - Engineering |
hierarchy_top_title |
Optical and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 |
title |
On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
ctrlnum |
(DE-627)OLC2081994380 (DE-He213)s11082-014-0050-9-p |
title_full |
On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
author_sort |
Koprucki, Thomas |
journal |
Optical and quantum electronics |
journalStr |
Optical and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1327 |
author_browse |
Koprucki, Thomas Rotundo, Nella Farrell, Patricio Doan, Duy Hai Fuhrmann, Jürgen |
container_volume |
47 |
class |
500 620 VZ |
format_se |
Aufsätze |
author-letter |
Koprucki, Thomas |
doi_str_mv |
10.1007/s11082-014-0050-9 |
dewey-full |
500 620 |
title_sort |
on thermodynamic consistency of a scharfetter–gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
title_auth |
On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
abstract |
Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 |
container_issue |
6 |
title_short |
On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement |
url |
https://doi.org/10.1007/s11082-014-0050-9 |
remote_bool |
false |
author2 |
Rotundo, Nella Farrell, Patricio Doan, Duy Hai Fuhrmann, Jürgen |
author2Str |
Rotundo, Nella Farrell, Patricio Doan, Duy Hai Fuhrmann, Jürgen |
ppnlink |
129419540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11082-014-0050-9 |
up_date |
2024-07-04T09:26:01.025Z |
_version_ |
1803640017814290432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2081994380</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503233912.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230228s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-014-0050-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2081994380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-014-0050-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koprucki, Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scharfetter–Gummel scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamic consistency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rotundo, Nella</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farrell, Patricio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doan, Duy Hai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuhrmann, Jürgen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">47(2014), 6 vom: 30. Okt., Seite 1327-1332</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:6</subfield><subfield code="g">day:30</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1327-1332</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-014-0050-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2014</subfield><subfield code="e">6</subfield><subfield code="b">30</subfield><subfield code="c">10</subfield><subfield code="h">1327-1332</subfield></datafield></record></collection>
|
score |
7.400319 |