The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes
Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoro...
Ausführliche Beschreibung
Autor*in: |
Khusi, Bongumusa B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer International Publishing Switzerland 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Transition metal chemistry - Springer International Publishing, 1975, 41(2015), 2 vom: 01. Dez., Seite 191-203 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2015 ; number:2 ; day:01 ; month:12 ; pages:191-203 |
Links: |
---|
DOI / URN: |
10.1007/s11243-015-0011-6 |
---|
Katalog-ID: |
OLC2084054095 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2084054095 | ||
003 | DE-627 | ||
005 | 20230504063309.0 | ||
007 | tu | ||
008 | 230301s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11243-015-0011-6 |2 doi | |
035 | |a (DE-627)OLC2084054095 | ||
035 | |a (DE-He213)s11243-015-0011-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Khusi, Bongumusa B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer International Publishing Switzerland 2015 | ||
520 | |a Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. | ||
650 | 4 | |a Pyrazole | |
650 | 4 | |a Pyrazole Ring | |
650 | 4 | |a Terpy | |
650 | 4 | |a Aqua Ligand | |
650 | 4 | |a TMTU | |
700 | 1 | |a Mambanda, Allen |4 aut | |
700 | 1 | |a Jaganyi, Deogratius |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Transition metal chemistry |d Springer International Publishing, 1975 |g 41(2015), 2 vom: 01. Dez., Seite 191-203 |w (DE-627)129605417 |w (DE-600)242084-3 |w (DE-576)015099652 |x 0340-4285 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2015 |g number:2 |g day:01 |g month:12 |g pages:191-203 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11243-015-0011-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4125 | ||
951 | |a AR | ||
952 | |d 41 |j 2015 |e 2 |b 01 |c 12 |h 191-203 |
author_variant |
b b k bb bbk a m am d j dj |
---|---|
matchkey_str |
article:03404285:2015----::hrlosbttetiaiettnceaigiadnhsbtttooaulgns |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11243-015-0011-6 doi (DE-627)OLC2084054095 (DE-He213)s11243-015-0011-6-p DE-627 ger DE-627 rakwb eng 660 VZ Khusi, Bongumusa B. verfasserin aut The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2015 Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU Mambanda, Allen aut Jaganyi, Deogratius aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2015), 2 vom: 01. Dez., Seite 191-203 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2015 number:2 day:01 month:12 pages:191-203 https://doi.org/10.1007/s11243-015-0011-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2015 2 01 12 191-203 |
spelling |
10.1007/s11243-015-0011-6 doi (DE-627)OLC2084054095 (DE-He213)s11243-015-0011-6-p DE-627 ger DE-627 rakwb eng 660 VZ Khusi, Bongumusa B. verfasserin aut The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2015 Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU Mambanda, Allen aut Jaganyi, Deogratius aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2015), 2 vom: 01. Dez., Seite 191-203 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2015 number:2 day:01 month:12 pages:191-203 https://doi.org/10.1007/s11243-015-0011-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2015 2 01 12 191-203 |
allfields_unstemmed |
10.1007/s11243-015-0011-6 doi (DE-627)OLC2084054095 (DE-He213)s11243-015-0011-6-p DE-627 ger DE-627 rakwb eng 660 VZ Khusi, Bongumusa B. verfasserin aut The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2015 Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU Mambanda, Allen aut Jaganyi, Deogratius aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2015), 2 vom: 01. Dez., Seite 191-203 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2015 number:2 day:01 month:12 pages:191-203 https://doi.org/10.1007/s11243-015-0011-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2015 2 01 12 191-203 |
allfieldsGer |
10.1007/s11243-015-0011-6 doi (DE-627)OLC2084054095 (DE-He213)s11243-015-0011-6-p DE-627 ger DE-627 rakwb eng 660 VZ Khusi, Bongumusa B. verfasserin aut The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2015 Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU Mambanda, Allen aut Jaganyi, Deogratius aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2015), 2 vom: 01. Dez., Seite 191-203 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2015 number:2 day:01 month:12 pages:191-203 https://doi.org/10.1007/s11243-015-0011-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2015 2 01 12 191-203 |
allfieldsSound |
10.1007/s11243-015-0011-6 doi (DE-627)OLC2084054095 (DE-He213)s11243-015-0011-6-p DE-627 ger DE-627 rakwb eng 660 VZ Khusi, Bongumusa B. verfasserin aut The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2015 Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU Mambanda, Allen aut Jaganyi, Deogratius aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2015), 2 vom: 01. Dez., Seite 191-203 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2015 number:2 day:01 month:12 pages:191-203 https://doi.org/10.1007/s11243-015-0011-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2015 2 01 12 191-203 |
language |
English |
source |
Enthalten in Transition metal chemistry 41(2015), 2 vom: 01. Dez., Seite 191-203 volume:41 year:2015 number:2 day:01 month:12 pages:191-203 |
sourceStr |
Enthalten in Transition metal chemistry 41(2015), 2 vom: 01. Dez., Seite 191-203 volume:41 year:2015 number:2 day:01 month:12 pages:191-203 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Transition metal chemistry |
authorswithroles_txt_mv |
Khusi, Bongumusa B. @@aut@@ Mambanda, Allen @@aut@@ Jaganyi, Deogratius @@aut@@ |
publishDateDaySort_date |
2015-12-01T00:00:00Z |
hierarchy_top_id |
129605417 |
dewey-sort |
3660 |
id |
OLC2084054095 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2084054095</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504063309.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230301s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11243-015-0011-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2084054095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11243-015-0011-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khusi, Bongumusa B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing Switzerland 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrazole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrazole Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terpy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aqua Ligand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TMTU</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mambanda, Allen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaganyi, Deogratius</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transition metal chemistry</subfield><subfield code="d">Springer International Publishing, 1975</subfield><subfield code="g">41(2015), 2 vom: 01. Dez., Seite 191-203</subfield><subfield code="w">(DE-627)129605417</subfield><subfield code="w">(DE-600)242084-3</subfield><subfield code="w">(DE-576)015099652</subfield><subfield code="x">0340-4285</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:191-203</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11243-015-0011-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">191-203</subfield></datafield></record></collection>
|
author |
Khusi, Bongumusa B. |
spellingShingle |
Khusi, Bongumusa B. ddc 660 misc Pyrazole misc Pyrazole Ring misc Terpy misc Aqua Ligand misc TMTU The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes |
authorStr |
Khusi, Bongumusa B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129605417 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0340-4285 |
topic_title |
660 VZ The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes Pyrazole Pyrazole Ring Terpy Aqua Ligand TMTU |
topic |
ddc 660 misc Pyrazole misc Pyrazole Ring misc Terpy misc Aqua Ligand misc TMTU |
topic_unstemmed |
ddc 660 misc Pyrazole misc Pyrazole Ring misc Terpy misc Aqua Ligand misc TMTU |
topic_browse |
ddc 660 misc Pyrazole misc Pyrazole Ring misc Terpy misc Aqua Ligand misc TMTU |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Transition metal chemistry |
hierarchy_parent_id |
129605417 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Transition metal chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 |
title |
The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes |
ctrlnum |
(DE-627)OLC2084054095 (DE-He213)s11243-015-0011-6-p |
title_full |
The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes |
author_sort |
Khusi, Bongumusa B. |
journal |
Transition metal chemistry |
journalStr |
Transition metal chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
191 |
author_browse |
Khusi, Bongumusa B. Mambanda, Allen Jaganyi, Deogratius |
container_volume |
41 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Khusi, Bongumusa B. |
doi_str_mv |
10.1007/s11243-015-0011-6 |
dewey-full |
660 |
title_sort |
the role of substituents in a bidentate n,n-chelating ligand on the substitution of aqua ligands from mononuclear pt(ii) complexes |
title_auth |
The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes |
abstract |
Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. © Springer International Publishing Switzerland 2015 |
abstractGer |
Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. © Springer International Publishing Switzerland 2015 |
abstract_unstemmed |
Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results. © Springer International Publishing Switzerland 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 |
container_issue |
2 |
title_short |
The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes |
url |
https://doi.org/10.1007/s11243-015-0011-6 |
remote_bool |
false |
author2 |
Mambanda, Allen Jaganyi, Deogratius |
author2Str |
Mambanda, Allen Jaganyi, Deogratius |
ppnlink |
129605417 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11243-015-0011-6 |
up_date |
2024-07-04T01:21:20.605Z |
_version_ |
1803609524778565632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2084054095</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504063309.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230301s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11243-015-0011-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2084054095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11243-015-0011-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khusi, Bongumusa B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The role of substituents in a bidentate N,N-chelating ligand on the substitution of aqua ligands from mononuclear Pt(II) complexes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing Switzerland 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(H2Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCH3Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}($ H_{2} $O)2]($ ClO_{4} $)2, [Pt(dCF3Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, $$ k_{{{\text{obs }}\left( {1/2} \right)}} $$, for the stepwise substitution of the first and second aqua ligands obeyed the rate law: $$ k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] $$. The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF3Py) > Pt(H2Py) > Pt(dCH3Py), while that of the second was Pt(H2Py) ≈ Pt(dCF3Py) > Pt(dCH3Py). Lower pKa values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrazole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrazole Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terpy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aqua Ligand</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TMTU</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mambanda, Allen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaganyi, Deogratius</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transition metal chemistry</subfield><subfield code="d">Springer International Publishing, 1975</subfield><subfield code="g">41(2015), 2 vom: 01. Dez., Seite 191-203</subfield><subfield code="w">(DE-627)129605417</subfield><subfield code="w">(DE-600)242084-3</subfield><subfield code="w">(DE-576)015099652</subfield><subfield code="x">0340-4285</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:191-203</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11243-015-0011-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">191-203</subfield></datafield></record></collection>
|
score |
7.40189 |