Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study
Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equ...
Ausführliche Beschreibung
Autor*in: |
Ewais, Hassan A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer International Publishing Switzerland 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Transition metal chemistry - Springer International Publishing, 1975, 41(2016), 4 vom: 02. März, Seite 427-434 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2016 ; number:4 ; day:02 ; month:03 ; pages:427-434 |
Links: |
---|
DOI / URN: |
10.1007/s11243-016-0038-3 |
---|
Katalog-ID: |
OLC2084054753 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2084054753 | ||
003 | DE-627 | ||
005 | 20230504063312.0 | ||
007 | tu | ||
008 | 230301s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11243-016-0038-3 |2 doi | |
035 | |a (DE-627)OLC2084054753 | ||
035 | |a (DE-He213)s11243-016-0038-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Ewais, Hassan A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer International Publishing Switzerland 2016 | ||
520 | |a Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. | ||
650 | 4 | |a Periodate | |
650 | 4 | |a Periodate Oxidation | |
650 | 4 | |a Picolinic Acid | |
650 | 4 | |a Dipicolinic Acid | |
650 | 4 | |a Water Ligand | |
700 | 1 | |a Al-Orabi, Randa O. |4 aut | |
700 | 1 | |a Obaid, Abdulla Y. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Transition metal chemistry |d Springer International Publishing, 1975 |g 41(2016), 4 vom: 02. März, Seite 427-434 |w (DE-627)129605417 |w (DE-600)242084-3 |w (DE-576)015099652 |x 0340-4285 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2016 |g number:4 |g day:02 |g month:03 |g pages:427-434 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11243-016-0038-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4125 | ||
951 | |a AR | ||
952 | |d 41 |j 2016 |e 4 |b 02 |c 03 |h 427-434 |
author_variant |
h a e ha hae r o a o roa roao a y o ay ayo |
---|---|
matchkey_str |
article:03404285:2016----::agnsictlzdeidtoiainftrayiioiaohoimicmlxihmndaeaes |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s11243-016-0038-3 doi (DE-627)OLC2084054753 (DE-He213)s11243-016-0038-3-p DE-627 ger DE-627 rakwb eng 660 VZ Ewais, Hassan A. verfasserin aut Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2016 Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand Al-Orabi, Randa O. aut Obaid, Abdulla Y. aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2016), 4 vom: 02. März, Seite 427-434 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2016 number:4 day:02 month:03 pages:427-434 https://doi.org/10.1007/s11243-016-0038-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2016 4 02 03 427-434 |
spelling |
10.1007/s11243-016-0038-3 doi (DE-627)OLC2084054753 (DE-He213)s11243-016-0038-3-p DE-627 ger DE-627 rakwb eng 660 VZ Ewais, Hassan A. verfasserin aut Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2016 Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand Al-Orabi, Randa O. aut Obaid, Abdulla Y. aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2016), 4 vom: 02. März, Seite 427-434 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2016 number:4 day:02 month:03 pages:427-434 https://doi.org/10.1007/s11243-016-0038-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2016 4 02 03 427-434 |
allfields_unstemmed |
10.1007/s11243-016-0038-3 doi (DE-627)OLC2084054753 (DE-He213)s11243-016-0038-3-p DE-627 ger DE-627 rakwb eng 660 VZ Ewais, Hassan A. verfasserin aut Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2016 Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand Al-Orabi, Randa O. aut Obaid, Abdulla Y. aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2016), 4 vom: 02. März, Seite 427-434 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2016 number:4 day:02 month:03 pages:427-434 https://doi.org/10.1007/s11243-016-0038-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2016 4 02 03 427-434 |
allfieldsGer |
10.1007/s11243-016-0038-3 doi (DE-627)OLC2084054753 (DE-He213)s11243-016-0038-3-p DE-627 ger DE-627 rakwb eng 660 VZ Ewais, Hassan A. verfasserin aut Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2016 Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand Al-Orabi, Randa O. aut Obaid, Abdulla Y. aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2016), 4 vom: 02. März, Seite 427-434 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2016 number:4 day:02 month:03 pages:427-434 https://doi.org/10.1007/s11243-016-0038-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2016 4 02 03 427-434 |
allfieldsSound |
10.1007/s11243-016-0038-3 doi (DE-627)OLC2084054753 (DE-He213)s11243-016-0038-3-p DE-627 ger DE-627 rakwb eng 660 VZ Ewais, Hassan A. verfasserin aut Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International Publishing Switzerland 2016 Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand Al-Orabi, Randa O. aut Obaid, Abdulla Y. aut Enthalten in Transition metal chemistry Springer International Publishing, 1975 41(2016), 4 vom: 02. März, Seite 427-434 (DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 0340-4285 nnns volume:41 year:2016 number:4 day:02 month:03 pages:427-434 https://doi.org/10.1007/s11243-016-0038-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 AR 41 2016 4 02 03 427-434 |
language |
English |
source |
Enthalten in Transition metal chemistry 41(2016), 4 vom: 02. März, Seite 427-434 volume:41 year:2016 number:4 day:02 month:03 pages:427-434 |
sourceStr |
Enthalten in Transition metal chemistry 41(2016), 4 vom: 02. März, Seite 427-434 volume:41 year:2016 number:4 day:02 month:03 pages:427-434 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Transition metal chemistry |
authorswithroles_txt_mv |
Ewais, Hassan A. @@aut@@ Al-Orabi, Randa O. @@aut@@ Obaid, Abdulla Y. @@aut@@ |
publishDateDaySort_date |
2016-03-02T00:00:00Z |
hierarchy_top_id |
129605417 |
dewey-sort |
3660 |
id |
OLC2084054753 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2084054753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504063312.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230301s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11243-016-0038-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2084054753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11243-016-0038-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ewais, Hassan A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing Switzerland 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodate Oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Picolinic Acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipicolinic Acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Ligand</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Orabi, Randa O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obaid, Abdulla Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transition metal chemistry</subfield><subfield code="d">Springer International Publishing, 1975</subfield><subfield code="g">41(2016), 4 vom: 02. März, Seite 427-434</subfield><subfield code="w">(DE-627)129605417</subfield><subfield code="w">(DE-600)242084-3</subfield><subfield code="w">(DE-576)015099652</subfield><subfield code="x">0340-4285</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:427-434</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11243-016-0038-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">427-434</subfield></datafield></record></collection>
|
author |
Ewais, Hassan A. |
spellingShingle |
Ewais, Hassan A. ddc 660 misc Periodate misc Periodate Oxidation misc Picolinic Acid misc Dipicolinic Acid misc Water Ligand Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
authorStr |
Ewais, Hassan A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129605417 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0340-4285 |
topic_title |
660 VZ Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study Periodate Periodate Oxidation Picolinic Acid Dipicolinic Acid Water Ligand |
topic |
ddc 660 misc Periodate misc Periodate Oxidation misc Picolinic Acid misc Dipicolinic Acid misc Water Ligand |
topic_unstemmed |
ddc 660 misc Periodate misc Periodate Oxidation misc Picolinic Acid misc Dipicolinic Acid misc Water Ligand |
topic_browse |
ddc 660 misc Periodate misc Periodate Oxidation misc Picolinic Acid misc Dipicolinic Acid misc Water Ligand |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Transition metal chemistry |
hierarchy_parent_id |
129605417 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Transition metal chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129605417 (DE-600)242084-3 (DE-576)015099652 |
title |
Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
ctrlnum |
(DE-627)OLC2084054753 (DE-He213)s11243-016-0038-3-p |
title_full |
Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
author_sort |
Ewais, Hassan A. |
journal |
Transition metal chemistry |
journalStr |
Transition metal chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
427 |
author_browse |
Ewais, Hassan A. Al-Orabi, Randa O. Obaid, Abdulla Y. |
container_volume |
41 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Ewais, Hassan A. |
doi_str_mv |
10.1007/s11243-016-0038-3 |
dewey-full |
660 |
title_sort |
manganese(ii) catalyzed periodate oxidation of a ternary dipicolinatochromium(iii) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
title_auth |
Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
abstract |
Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. © Springer International Publishing Switzerland 2016 |
abstractGer |
Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. © Springer International Publishing Switzerland 2016 |
abstract_unstemmed |
Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation. © Springer International Publishing Switzerland 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4125 |
container_issue |
4 |
title_short |
Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study |
url |
https://doi.org/10.1007/s11243-016-0038-3 |
remote_bool |
false |
author2 |
Al-Orabi, Randa O. Obaid, Abdulla Y. |
author2Str |
Al-Orabi, Randa O. Obaid, Abdulla Y. |
ppnlink |
129605417 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11243-016-0038-3 |
up_date |
2024-07-04T01:21:29.588Z |
_version_ |
1803609534195826688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2084054753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504063312.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230301s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11243-016-0038-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2084054753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11243-016-0038-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ewais, Hassan A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Manganese(II) catalyzed periodate oxidation of a ternary dipicolinatochromium(III) complex with iminodiacetate as co-ligand: mechanistic and kinetic study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing Switzerland 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The kinetics and mechanism of the oxidation of [$ Cr^{III} $(DPA)(IDA)($ H_{2} $O)]− (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × $ 10^{−6} $ mol $ dm^{−3} $ enhanced the reaction rate; the reaction is first order with respect to both [$ IO_{4} $−] and the Cr complex, and obeys the following rate law: $$ {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . $$ Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of $ IO_{4} $− to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodate Oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Picolinic Acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipicolinic Acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Ligand</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Orabi, Randa O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obaid, Abdulla Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transition metal chemistry</subfield><subfield code="d">Springer International Publishing, 1975</subfield><subfield code="g">41(2016), 4 vom: 02. März, Seite 427-434</subfield><subfield code="w">(DE-627)129605417</subfield><subfield code="w">(DE-600)242084-3</subfield><subfield code="w">(DE-576)015099652</subfield><subfield code="x">0340-4285</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:427-434</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11243-016-0038-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">427-434</subfield></datafield></record></collection>
|
score |
7.399987 |