Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis
Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown th...
Ausführliche Beschreibung
Autor*in: |
Hart, H. E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1965 |
---|
Schlagwörter: |
---|
Anmerkung: |
© N. Rashevsky 1965 |
---|
Übergeordnetes Werk: |
Enthalten in: Bulletin of mathematical biology - Springer-Verlag, 1973, 27(1965), 4 vom: Dez., Seite 417-429 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:1965 ; number:4 ; month:12 ; pages:417-429 |
Links: |
---|
DOI / URN: |
10.1007/BF02476846 |
---|
Katalog-ID: |
OLC2087050554 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2087050554 | ||
003 | DE-627 | ||
005 | 20230401102902.0 | ||
007 | tu | ||
008 | 230302s1965 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02476846 |2 doi | |
035 | |a (DE-627)OLC2087050554 | ||
035 | |a (DE-He213)BF02476846-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 510 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Hart, H. E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis |
264 | 1 | |c 1965 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © N. Rashevsky 1965 | ||
520 | |a Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. | ||
650 | 4 | |a Tracer Injection | |
650 | 4 | |a Tracer Experiment | |
650 | 4 | |a Initial Entry | |
650 | 4 | |a Tracer Material | |
650 | 4 | |a Tracer Input | |
773 | 0 | 8 | |i Enthalten in |t Bulletin of mathematical biology |d Springer-Verlag, 1973 |g 27(1965), 4 vom: Dez., Seite 417-429 |w (DE-627)129391719 |w (DE-600)184905-0 |w (DE-576)014776863 |x 0092-8240 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:1965 |g number:4 |g month:12 |g pages:417-429 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02476846 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 42.00 |q VZ |
951 | |a AR | ||
952 | |d 27 |j 1965 |e 4 |c 12 |h 417-429 |
author_variant |
h e h he heh |
---|---|
matchkey_str |
article:00928240:1965----::nlssfrcrxeietvnerlqainoprub |
hierarchy_sort_str |
1965 |
bklnumber |
42.00 |
publishDate |
1965 |
allfields |
10.1007/BF02476846 doi (DE-627)OLC2087050554 (DE-He213)BF02476846-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Hart, H. E. verfasserin aut Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis 1965 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © N. Rashevsky 1965 Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input Enthalten in Bulletin of mathematical biology Springer-Verlag, 1973 27(1965), 4 vom: Dez., Seite 417-429 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:27 year:1965 number:4 month:12 pages:417-429 https://doi.org/10.1007/BF02476846 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT 42.00 VZ AR 27 1965 4 12 417-429 |
spelling |
10.1007/BF02476846 doi (DE-627)OLC2087050554 (DE-He213)BF02476846-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Hart, H. E. verfasserin aut Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis 1965 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © N. Rashevsky 1965 Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input Enthalten in Bulletin of mathematical biology Springer-Verlag, 1973 27(1965), 4 vom: Dez., Seite 417-429 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:27 year:1965 number:4 month:12 pages:417-429 https://doi.org/10.1007/BF02476846 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT 42.00 VZ AR 27 1965 4 12 417-429 |
allfields_unstemmed |
10.1007/BF02476846 doi (DE-627)OLC2087050554 (DE-He213)BF02476846-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Hart, H. E. verfasserin aut Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis 1965 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © N. Rashevsky 1965 Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input Enthalten in Bulletin of mathematical biology Springer-Verlag, 1973 27(1965), 4 vom: Dez., Seite 417-429 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:27 year:1965 number:4 month:12 pages:417-429 https://doi.org/10.1007/BF02476846 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT 42.00 VZ AR 27 1965 4 12 417-429 |
allfieldsGer |
10.1007/BF02476846 doi (DE-627)OLC2087050554 (DE-He213)BF02476846-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Hart, H. E. verfasserin aut Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis 1965 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © N. Rashevsky 1965 Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input Enthalten in Bulletin of mathematical biology Springer-Verlag, 1973 27(1965), 4 vom: Dez., Seite 417-429 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:27 year:1965 number:4 month:12 pages:417-429 https://doi.org/10.1007/BF02476846 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT 42.00 VZ AR 27 1965 4 12 417-429 |
allfieldsSound |
10.1007/BF02476846 doi (DE-627)OLC2087050554 (DE-He213)BF02476846-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Hart, H. E. verfasserin aut Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis 1965 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © N. Rashevsky 1965 Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input Enthalten in Bulletin of mathematical biology Springer-Verlag, 1973 27(1965), 4 vom: Dez., Seite 417-429 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:27 year:1965 number:4 month:12 pages:417-429 https://doi.org/10.1007/BF02476846 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT 42.00 VZ AR 27 1965 4 12 417-429 |
language |
English |
source |
Enthalten in Bulletin of mathematical biology 27(1965), 4 vom: Dez., Seite 417-429 volume:27 year:1965 number:4 month:12 pages:417-429 |
sourceStr |
Enthalten in Bulletin of mathematical biology 27(1965), 4 vom: Dez., Seite 417-429 volume:27 year:1965 number:4 month:12 pages:417-429 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Bulletin of mathematical biology |
authorswithroles_txt_mv |
Hart, H. E. @@aut@@ |
publishDateDaySort_date |
1965-12-01T00:00:00Z |
hierarchy_top_id |
129391719 |
dewey-sort |
3570 |
id |
OLC2087050554 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2087050554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401102902.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230302s1965 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02476846</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2087050554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02476846-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hart, H. E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1965</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© N. Rashevsky 1965</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial Entry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Input</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of mathematical biology</subfield><subfield code="d">Springer-Verlag, 1973</subfield><subfield code="g">27(1965), 4 vom: Dez., Seite 417-429</subfield><subfield code="w">(DE-627)129391719</subfield><subfield code="w">(DE-600)184905-0</subfield><subfield code="w">(DE-576)014776863</subfield><subfield code="x">0092-8240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1965</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:417-429</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02476846</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1965</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">417-429</subfield></datafield></record></collection>
|
author |
Hart, H. E. |
spellingShingle |
Hart, H. E. ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Tracer Injection misc Tracer Experiment misc Initial Entry misc Tracer Material misc Tracer Input Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis |
authorStr |
Hart, H. E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129391719 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0092-8240 |
topic_title |
570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis Tracer Injection Tracer Experiment Initial Entry Tracer Material Tracer Input |
topic |
ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Tracer Injection misc Tracer Experiment misc Initial Entry misc Tracer Material misc Tracer Input |
topic_unstemmed |
ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Tracer Injection misc Tracer Experiment misc Initial Entry misc Tracer Material misc Tracer Input |
topic_browse |
ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Tracer Injection misc Tracer Experiment misc Initial Entry misc Tracer Material misc Tracer Input |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Bulletin of mathematical biology |
hierarchy_parent_id |
129391719 |
dewey-tens |
570 - Life sciences; biology 510 - Mathematics |
hierarchy_top_title |
Bulletin of mathematical biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 |
title |
Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis |
ctrlnum |
(DE-627)OLC2087050554 (DE-He213)BF02476846-p |
title_full |
Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis |
author_sort |
Hart, H. E. |
journal |
Bulletin of mathematical biology |
journalStr |
Bulletin of mathematical biology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1965 |
contenttype_str_mv |
txt |
container_start_page |
417 |
author_browse |
Hart, H. E. |
container_volume |
27 |
class |
570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl |
format_se |
Aufsätze |
author-letter |
Hart, H. E. |
doi_str_mv |
10.1007/BF02476846 |
dewey-full |
570 510 |
title_sort |
analysis of tracer experiments v: integral equations of perturbation-tracer analysis |
title_auth |
Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis |
abstract |
Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. © N. Rashevsky 1965 |
abstractGer |
Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. © N. Rashevsky 1965 |
abstract_unstemmed |
Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system. © N. Rashevsky 1965 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
4 |
title_short |
Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis |
url |
https://doi.org/10.1007/BF02476846 |
remote_bool |
false |
ppnlink |
129391719 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02476846 |
up_date |
2024-07-03T13:25:20.339Z |
_version_ |
1803564477680975872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2087050554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401102902.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230302s1965 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02476846</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2087050554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02476846-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hart, H. E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of tracer experiments V: Integral equations of perturbation-tracer analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1965</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© N. Rashevsky 1965</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An integral equation approach to perturbation-tracer analysis in steady-state multicompartment systems is formulated. The theory is developed for δ function perturbation and tracer inputs and extended to the case of continuous small perturbations and continuous tracer inputs. It is shown that the first order dependence of the initial entry function can then be expressed by means of an integral equation:$$B_1 (t) = \int_{t_2 = - \infty }^\infty {\int_{t_1 = - \infty }^\infty {P(t_1 )T(t_2 )B_1 (t - t_2 ,t_1 - t_2 )dt_1 dt_2 } } $$ whereB1(t) is the first order initial entry function for the tracer material,P($ t_{1} $) the perturbation function.T(t2) is the tracer input function, andB1(t−t2,t1−t2) is a continuous function of two variables characterizing the first order perturbation-tracer response of the system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial Entry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer Input</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of mathematical biology</subfield><subfield code="d">Springer-Verlag, 1973</subfield><subfield code="g">27(1965), 4 vom: Dez., Seite 417-429</subfield><subfield code="w">(DE-627)129391719</subfield><subfield code="w">(DE-600)184905-0</subfield><subfield code="w">(DE-576)014776863</subfield><subfield code="x">0092-8240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1965</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:417-429</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02476846</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1965</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">417-429</subfield></datafield></record></collection>
|
score |
7.401597 |