On the theory of selection of coupled macromolecular systems
Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters an...
Ausführliche Beschreibung
Autor*in: |
Jones, B. L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1976 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Society for Mathematical Biology 1976 |
---|
Übergeordnetes Werk: |
Enthalten in: Bulletin of mathematical biology - Kluwer Academic Publishers, 1973, 38(1976), 1 vom: Jan., Seite 15-28 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:1976 ; number:1 ; month:01 ; pages:15-28 |
Links: |
---|
DOI / URN: |
10.1007/BF02459537 |
---|
Katalog-ID: |
OLC2087056560 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2087056560 | ||
003 | DE-627 | ||
005 | 20230401102943.0 | ||
007 | tu | ||
008 | 230302s1976 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02459537 |2 doi | |
035 | |a (DE-627)OLC2087056560 | ||
035 | |a (DE-He213)BF02459537-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 510 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Jones, B. L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the theory of selection of coupled macromolecular systems |
264 | 1 | |c 1976 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Society for Mathematical Biology 1976 | ||
520 | |a Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. | ||
650 | 4 | |a Molecular Species | |
650 | 4 | |a Extremal Principle | |
650 | 4 | |a Perturbation Result | |
650 | 4 | |a Macromolecular Species | |
650 | 4 | |a Constant Rate Parameter | |
700 | 1 | |a Enns, R. H. |4 aut | |
700 | 1 | |a Rangnekar, S. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Bulletin of mathematical biology |d Kluwer Academic Publishers, 1973 |g 38(1976), 1 vom: Jan., Seite 15-28 |w (DE-627)129391719 |w (DE-600)184905-0 |w (DE-576)014776863 |x 0092-8240 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:1976 |g number:1 |g month:01 |g pages:15-28 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02459537 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4310 | ||
936 | b | k | |a 42.00 |q VZ |
951 | |a AR | ||
952 | |d 38 |j 1976 |e 1 |c 01 |h 15-28 |
author_variant |
b l j bl blj r h e rh rhe s s r ss ssr |
---|---|
matchkey_str |
article:00928240:1976----::nhteroslcinfopemcoo |
hierarchy_sort_str |
1976 |
bklnumber |
42.00 |
publishDate |
1976 |
allfields |
10.1007/BF02459537 doi (DE-627)OLC2087056560 (DE-He213)BF02459537-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Jones, B. L. verfasserin aut On the theory of selection of coupled macromolecular systems 1976 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Mathematical Biology 1976 Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter Enns, R. H. aut Rangnekar, S. S. aut Enthalten in Bulletin of mathematical biology Kluwer Academic Publishers, 1973 38(1976), 1 vom: Jan., Seite 15-28 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:38 year:1976 number:1 month:01 pages:15-28 https://doi.org/10.1007/BF02459537 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4219 GBV_ILN_4310 42.00 VZ AR 38 1976 1 01 15-28 |
spelling |
10.1007/BF02459537 doi (DE-627)OLC2087056560 (DE-He213)BF02459537-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Jones, B. L. verfasserin aut On the theory of selection of coupled macromolecular systems 1976 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Mathematical Biology 1976 Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter Enns, R. H. aut Rangnekar, S. S. aut Enthalten in Bulletin of mathematical biology Kluwer Academic Publishers, 1973 38(1976), 1 vom: Jan., Seite 15-28 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:38 year:1976 number:1 month:01 pages:15-28 https://doi.org/10.1007/BF02459537 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4219 GBV_ILN_4310 42.00 VZ AR 38 1976 1 01 15-28 |
allfields_unstemmed |
10.1007/BF02459537 doi (DE-627)OLC2087056560 (DE-He213)BF02459537-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Jones, B. L. verfasserin aut On the theory of selection of coupled macromolecular systems 1976 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Mathematical Biology 1976 Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter Enns, R. H. aut Rangnekar, S. S. aut Enthalten in Bulletin of mathematical biology Kluwer Academic Publishers, 1973 38(1976), 1 vom: Jan., Seite 15-28 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:38 year:1976 number:1 month:01 pages:15-28 https://doi.org/10.1007/BF02459537 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4219 GBV_ILN_4310 42.00 VZ AR 38 1976 1 01 15-28 |
allfieldsGer |
10.1007/BF02459537 doi (DE-627)OLC2087056560 (DE-He213)BF02459537-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Jones, B. L. verfasserin aut On the theory of selection of coupled macromolecular systems 1976 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Mathematical Biology 1976 Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter Enns, R. H. aut Rangnekar, S. S. aut Enthalten in Bulletin of mathematical biology Kluwer Academic Publishers, 1973 38(1976), 1 vom: Jan., Seite 15-28 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:38 year:1976 number:1 month:01 pages:15-28 https://doi.org/10.1007/BF02459537 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4219 GBV_ILN_4310 42.00 VZ AR 38 1976 1 01 15-28 |
allfieldsSound |
10.1007/BF02459537 doi (DE-627)OLC2087056560 (DE-He213)BF02459537-p DE-627 ger DE-627 rakwb eng 570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl Jones, B. L. verfasserin aut On the theory of selection of coupled macromolecular systems 1976 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Society for Mathematical Biology 1976 Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter Enns, R. H. aut Rangnekar, S. S. aut Enthalten in Bulletin of mathematical biology Kluwer Academic Publishers, 1973 38(1976), 1 vom: Jan., Seite 15-28 (DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 0092-8240 nnns volume:38 year:1976 number:1 month:01 pages:15-28 https://doi.org/10.1007/BF02459537 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4219 GBV_ILN_4310 42.00 VZ AR 38 1976 1 01 15-28 |
language |
English |
source |
Enthalten in Bulletin of mathematical biology 38(1976), 1 vom: Jan., Seite 15-28 volume:38 year:1976 number:1 month:01 pages:15-28 |
sourceStr |
Enthalten in Bulletin of mathematical biology 38(1976), 1 vom: Jan., Seite 15-28 volume:38 year:1976 number:1 month:01 pages:15-28 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Bulletin of mathematical biology |
authorswithroles_txt_mv |
Jones, B. L. @@aut@@ Enns, R. H. @@aut@@ Rangnekar, S. S. @@aut@@ |
publishDateDaySort_date |
1976-01-01T00:00:00Z |
hierarchy_top_id |
129391719 |
dewey-sort |
3570 |
id |
OLC2087056560 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2087056560</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401102943.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230302s1976 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02459537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2087056560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02459537-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jones, B. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the theory of selection of coupled macromolecular systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1976</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Mathematical Biology 1976</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular Species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremal Principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation Result</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macromolecular Species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Rate Parameter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Enns, R. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rangnekar, S. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of mathematical biology</subfield><subfield code="d">Kluwer Academic Publishers, 1973</subfield><subfield code="g">38(1976), 1 vom: Jan., Seite 15-28</subfield><subfield code="w">(DE-627)129391719</subfield><subfield code="w">(DE-600)184905-0</subfield><subfield code="w">(DE-576)014776863</subfield><subfield code="x">0092-8240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:1976</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:15-28</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02459537</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">1976</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">15-28</subfield></datafield></record></collection>
|
author |
Jones, B. L. |
spellingShingle |
Jones, B. L. ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Molecular Species misc Extremal Principle misc Perturbation Result misc Macromolecular Species misc Constant Rate Parameter On the theory of selection of coupled macromolecular systems |
authorStr |
Jones, B. L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129391719 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0092-8240 |
topic_title |
570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl On the theory of selection of coupled macromolecular systems Molecular Species Extremal Principle Perturbation Result Macromolecular Species Constant Rate Parameter |
topic |
ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Molecular Species misc Extremal Principle misc Perturbation Result misc Macromolecular Species misc Constant Rate Parameter |
topic_unstemmed |
ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Molecular Species misc Extremal Principle misc Perturbation Result misc Macromolecular Species misc Constant Rate Parameter |
topic_browse |
ddc 570 ssgn 12 fid BIODIV bkl 42.00 misc Molecular Species misc Extremal Principle misc Perturbation Result misc Macromolecular Species misc Constant Rate Parameter |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Bulletin of mathematical biology |
hierarchy_parent_id |
129391719 |
dewey-tens |
570 - Life sciences; biology 510 - Mathematics |
hierarchy_top_title |
Bulletin of mathematical biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129391719 (DE-600)184905-0 (DE-576)014776863 |
title |
On the theory of selection of coupled macromolecular systems |
ctrlnum |
(DE-627)OLC2087056560 (DE-He213)BF02459537-p |
title_full |
On the theory of selection of coupled macromolecular systems |
author_sort |
Jones, B. L. |
journal |
Bulletin of mathematical biology |
journalStr |
Bulletin of mathematical biology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1976 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Jones, B. L. Enns, R. H. Rangnekar, S. S. |
container_volume |
38 |
class |
570 510 VZ 12 ssgn BIODIV DE-30 fid 42.00 bkl |
format_se |
Aufsätze |
author-letter |
Jones, B. L. |
doi_str_mv |
10.1007/BF02459537 |
dewey-full |
570 510 |
title_sort |
on the theory of selection of coupled macromolecular systems |
title_auth |
On the theory of selection of coupled macromolecular systems |
abstract |
Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. © Society for Mathematical Biology 1976 |
abstractGer |
Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. © Society for Mathematical Biology 1976 |
abstract_unstemmed |
Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle. © Society for Mathematical Biology 1976 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4219 GBV_ILN_4310 |
container_issue |
1 |
title_short |
On the theory of selection of coupled macromolecular systems |
url |
https://doi.org/10.1007/BF02459537 |
remote_bool |
false |
author2 |
Enns, R. H. Rangnekar, S. S. |
author2Str |
Enns, R. H. Rangnekar, S. S. |
ppnlink |
129391719 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02459537 |
up_date |
2024-07-03T13:26:25.656Z |
_version_ |
1803564546187591680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2087056560</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401102943.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230302s1976 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02459537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2087056560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02459537-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jones, B. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the theory of selection of coupled macromolecular systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1976</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Society for Mathematical Biology 1976</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we examine a set of nonlinear rate equations (devised by M. Eigen (1971)) which describe the process of selection in a collection of self-reproducing, macromolecular information carriers. We construct exact solutions to the equations for the case of constant rate parameters and constant error distributions. The solutions allow the direct assessment of the effect of mutations on the “selective value” parameters discussed by Eigen as well as the distribution of the molecular species selected in steady state. In addition we show that the selection process may be characterized by an extremal principle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular Species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extremal Principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation Result</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macromolecular Species</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Rate Parameter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Enns, R. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rangnekar, S. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Bulletin of mathematical biology</subfield><subfield code="d">Kluwer Academic Publishers, 1973</subfield><subfield code="g">38(1976), 1 vom: Jan., Seite 15-28</subfield><subfield code="w">(DE-627)129391719</subfield><subfield code="w">(DE-600)184905-0</subfield><subfield code="w">(DE-576)014776863</subfield><subfield code="x">0092-8240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:1976</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:15-28</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02459537</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">1976</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">15-28</subfield></datafield></record></collection>
|
score |
7.401602 |