Gravitation and quantum mechanics of macroscopic objects
Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting unc...
Ausführliche Beschreibung
Autor*in: |
Karolyhazy, F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1966 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Società Italiana di Fisica 1966 |
---|
Übergeordnetes Werk: |
Enthalten in: Il Nuovo Cimento A (1965-1970) - Springer Berlin Heidelberg, 1971, 42(1966), 2 vom: März, Seite 390-402 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:1966 ; number:2 ; month:03 ; pages:390-402 |
Links: |
---|
DOI / URN: |
10.1007/BF02717926 |
---|
Katalog-ID: |
OLC2087109850 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2087109850 | ||
003 | DE-627 | ||
005 | 20230401103547.0 | ||
007 | tu | ||
008 | 230302s1966 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02717926 |2 doi | |
035 | |a (DE-627)OLC2087109850 | ||
035 | |a (DE-He213)BF02717926-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Karolyhazy, F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gravitation and quantum mechanics of macroscopic objects |
264 | 1 | |c 1966 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Società Italiana di Fisica 1966 | ||
520 | |a Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. | ||
650 | 4 | |a Wave Function | |
650 | 4 | |a Wave Packet | |
650 | 4 | |a Pure State | |
650 | 4 | |a World Line | |
650 | 4 | |a Macroscopic Object | |
773 | 0 | 8 | |i Enthalten in |t Il Nuovo Cimento A (1965-1970) |d Springer Berlin Heidelberg, 1971 |g 42(1966), 2 vom: März, Seite 390-402 |w (DE-627)130067792 |w (DE-600)441918-2 |w (DE-576)015602206 |x 0369-3546 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:1966 |g number:2 |g month:03 |g pages:390-402 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02717926 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 42 |j 1966 |e 2 |c 03 |h 390-402 |
author_variant |
f k fk |
---|---|
matchkey_str |
article:03693546:1966----::rvttoadunumcaisfar |
hierarchy_sort_str |
1966 |
bklnumber |
33.00 |
publishDate |
1966 |
allfields |
10.1007/BF02717926 doi (DE-627)OLC2087109850 (DE-He213)BF02717926-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Karolyhazy, F. verfasserin aut Gravitation and quantum mechanics of macroscopic objects 1966 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1966 Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. Wave Function Wave Packet Pure State World Line Macroscopic Object Enthalten in Il Nuovo Cimento A (1965-1970) Springer Berlin Heidelberg, 1971 42(1966), 2 vom: März, Seite 390-402 (DE-627)130067792 (DE-600)441918-2 (DE-576)015602206 0369-3546 nnns volume:42 year:1966 number:2 month:03 pages:390-402 https://doi.org/10.1007/BF02717926 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 42 1966 2 03 390-402 |
spelling |
10.1007/BF02717926 doi (DE-627)OLC2087109850 (DE-He213)BF02717926-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Karolyhazy, F. verfasserin aut Gravitation and quantum mechanics of macroscopic objects 1966 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1966 Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. Wave Function Wave Packet Pure State World Line Macroscopic Object Enthalten in Il Nuovo Cimento A (1965-1970) Springer Berlin Heidelberg, 1971 42(1966), 2 vom: März, Seite 390-402 (DE-627)130067792 (DE-600)441918-2 (DE-576)015602206 0369-3546 nnns volume:42 year:1966 number:2 month:03 pages:390-402 https://doi.org/10.1007/BF02717926 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 42 1966 2 03 390-402 |
allfields_unstemmed |
10.1007/BF02717926 doi (DE-627)OLC2087109850 (DE-He213)BF02717926-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Karolyhazy, F. verfasserin aut Gravitation and quantum mechanics of macroscopic objects 1966 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1966 Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. Wave Function Wave Packet Pure State World Line Macroscopic Object Enthalten in Il Nuovo Cimento A (1965-1970) Springer Berlin Heidelberg, 1971 42(1966), 2 vom: März, Seite 390-402 (DE-627)130067792 (DE-600)441918-2 (DE-576)015602206 0369-3546 nnns volume:42 year:1966 number:2 month:03 pages:390-402 https://doi.org/10.1007/BF02717926 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 42 1966 2 03 390-402 |
allfieldsGer |
10.1007/BF02717926 doi (DE-627)OLC2087109850 (DE-He213)BF02717926-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Karolyhazy, F. verfasserin aut Gravitation and quantum mechanics of macroscopic objects 1966 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1966 Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. Wave Function Wave Packet Pure State World Line Macroscopic Object Enthalten in Il Nuovo Cimento A (1965-1970) Springer Berlin Heidelberg, 1971 42(1966), 2 vom: März, Seite 390-402 (DE-627)130067792 (DE-600)441918-2 (DE-576)015602206 0369-3546 nnns volume:42 year:1966 number:2 month:03 pages:390-402 https://doi.org/10.1007/BF02717926 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 42 1966 2 03 390-402 |
allfieldsSound |
10.1007/BF02717926 doi (DE-627)OLC2087109850 (DE-He213)BF02717926-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Karolyhazy, F. verfasserin aut Gravitation and quantum mechanics of macroscopic objects 1966 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Società Italiana di Fisica 1966 Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. Wave Function Wave Packet Pure State World Line Macroscopic Object Enthalten in Il Nuovo Cimento A (1965-1970) Springer Berlin Heidelberg, 1971 42(1966), 2 vom: März, Seite 390-402 (DE-627)130067792 (DE-600)441918-2 (DE-576)015602206 0369-3546 nnns volume:42 year:1966 number:2 month:03 pages:390-402 https://doi.org/10.1007/BF02717926 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 42 1966 2 03 390-402 |
language |
English |
source |
Enthalten in Il Nuovo Cimento A (1965-1970) 42(1966), 2 vom: März, Seite 390-402 volume:42 year:1966 number:2 month:03 pages:390-402 |
sourceStr |
Enthalten in Il Nuovo Cimento A (1965-1970) 42(1966), 2 vom: März, Seite 390-402 volume:42 year:1966 number:2 month:03 pages:390-402 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wave Function Wave Packet Pure State World Line Macroscopic Object |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Il Nuovo Cimento A (1965-1970) |
authorswithroles_txt_mv |
Karolyhazy, F. @@aut@@ |
publishDateDaySort_date |
1966-03-01T00:00:00Z |
hierarchy_top_id |
130067792 |
dewey-sort |
3530 |
id |
OLC2087109850 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2087109850</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401103547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230302s1966 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02717926</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2087109850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02717926-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karolyhazy, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gravitation and quantum mechanics of macroscopic objects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1966</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica 1966</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Packet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pure State</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">World Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macroscopic Object</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Il Nuovo Cimento A (1965-1970)</subfield><subfield code="d">Springer Berlin Heidelberg, 1971</subfield><subfield code="g">42(1966), 2 vom: März, Seite 390-402</subfield><subfield code="w">(DE-627)130067792</subfield><subfield code="w">(DE-600)441918-2</subfield><subfield code="w">(DE-576)015602206</subfield><subfield code="x">0369-3546</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:1966</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:390-402</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02717926</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">1966</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">390-402</subfield></datafield></record></collection>
|
author |
Karolyhazy, F. |
spellingShingle |
Karolyhazy, F. ddc 530 bkl 33.00 misc Wave Function misc Wave Packet misc Pure State misc World Line misc Macroscopic Object Gravitation and quantum mechanics of macroscopic objects |
authorStr |
Karolyhazy, F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130067792 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0369-3546 |
topic_title |
530 VZ 33.00 bkl Gravitation and quantum mechanics of macroscopic objects Wave Function Wave Packet Pure State World Line Macroscopic Object |
topic |
ddc 530 bkl 33.00 misc Wave Function misc Wave Packet misc Pure State misc World Line misc Macroscopic Object |
topic_unstemmed |
ddc 530 bkl 33.00 misc Wave Function misc Wave Packet misc Pure State misc World Line misc Macroscopic Object |
topic_browse |
ddc 530 bkl 33.00 misc Wave Function misc Wave Packet misc Pure State misc World Line misc Macroscopic Object |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Il Nuovo Cimento A (1965-1970) |
hierarchy_parent_id |
130067792 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Il Nuovo Cimento A (1965-1970) |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130067792 (DE-600)441918-2 (DE-576)015602206 |
title |
Gravitation and quantum mechanics of macroscopic objects |
ctrlnum |
(DE-627)OLC2087109850 (DE-He213)BF02717926-p |
title_full |
Gravitation and quantum mechanics of macroscopic objects |
author_sort |
Karolyhazy, F. |
journal |
Il Nuovo Cimento A (1965-1970) |
journalStr |
Il Nuovo Cimento A (1965-1970) |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1966 |
contenttype_str_mv |
txt |
container_start_page |
390 |
author_browse |
Karolyhazy, F. |
container_volume |
42 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Karolyhazy, F. |
doi_str_mv |
10.1007/BF02717926 |
dewey-full |
530 |
title_sort |
gravitation and quantum mechanics of macroscopic objects |
title_auth |
Gravitation and quantum mechanics of macroscopic objects |
abstract |
Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. © Società Italiana di Fisica 1966 |
abstractGer |
Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. © Società Italiana di Fisica 1966 |
abstract_unstemmed |
Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained. © Società Italiana di Fisica 1966 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY |
container_issue |
2 |
title_short |
Gravitation and quantum mechanics of macroscopic objects |
url |
https://doi.org/10.1007/BF02717926 |
remote_bool |
false |
ppnlink |
130067792 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02717926 |
up_date |
2024-07-03T13:41:16.129Z |
_version_ |
1803565479893139456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2087109850</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401103547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230302s1966 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02717926</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2087109850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02717926-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karolyhazy, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gravitation and quantum mechanics of macroscopic objects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1966</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica 1966</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The problem of the reduction of the wave function in quantum theory is treated from a new standpoint. First, by combining Heisenberg's uncertainty relations with gravitation, quantitative limi tations on the sharpness of the structure of space-time are derived. Second, the resulting uncertainty in space-time structure is incorporated into the equations for the propagation of the quantum-mechanical wave amplitudes. In the resulting theory an initially pure wave function generally develops in time into a mixture. A single pure wave function survives only as long as it corresponds to a sufficiently small spread in the position of any massive part of the system under investigation. Quantitative relations between the mass and the maximum coherent spread in the center-of-mass wave function of a single body are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Packet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pure State</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">World Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macroscopic Object</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Il Nuovo Cimento A (1965-1970)</subfield><subfield code="d">Springer Berlin Heidelberg, 1971</subfield><subfield code="g">42(1966), 2 vom: März, Seite 390-402</subfield><subfield code="w">(DE-627)130067792</subfield><subfield code="w">(DE-600)441918-2</subfield><subfield code="w">(DE-576)015602206</subfield><subfield code="x">0369-3546</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:1966</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:390-402</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02717926</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">1966</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">390-402</subfield></datafield></record></collection>
|
score |
7.402815 |