Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II
Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative...
Ausführliche Beschreibung
Autor*in: |
de Boer, W. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1996 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1996 |
---|
Übergeordnetes Werk: |
Enthalten in: Zeitschrift für Physik - Springer-Verlag, 1979, 71(1996), 3 vom: 01. Juli, Seite 415-430 |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:1996 ; number:3 ; day:01 ; month:07 ; pages:415-430 |
Links: |
---|
DOI / URN: |
10.1007/BF02907000 |
---|
Katalog-ID: |
OLC209192895X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC209192895X | ||
003 | DE-627 | ||
005 | 20230331082416.0 | ||
007 | tu | ||
008 | 230331s1996 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02907000 |2 doi | |
035 | |a (DE-627)OLC209192895X | ||
035 | |a (DE-He213)BF02907000-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a de Boer, W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II |
264 | 1 | |c 1996 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1996 | ||
520 | |a Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. | ||
650 | 4 | |a Yukawa Coupling | |
650 | 4 | |a Electroweak Symmetry Breaking | |
650 | 4 | |a Higgs Potential | |
650 | 4 | |a Gluino Mass | |
650 | 4 | |a Trilinear Coupling | |
700 | 1 | |a Burkart, G. |4 aut | |
700 | 1 | |a Ehret, R. |4 aut | |
700 | 1 | |a Lautenbacher, J. |4 aut | |
700 | 1 | |a Oberschulte-Beckmann, W. |4 aut | |
700 | 1 | |a Schwickerath, U. |4 aut | |
700 | 1 | |a Bednyakov, V. |4 aut | |
700 | 1 | |a Kazakov, D. I. |4 aut | |
700 | 1 | |a Kovalenko, S. G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Zeitschrift für Physik |d Springer-Verlag, 1979 |g 71(1996), 3 vom: 01. Juli, Seite 415-430 |w (DE-627)130618799 |w (DE-600)795252-1 |w (DE-576)016125487 |x 0170-9739 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:1996 |g number:3 |g day:01 |g month:07 |g pages:415-430 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02907000 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 71 |j 1996 |e 3 |b 01 |c 07 |h 415-430 |
author_variant |
b w d bw bwd g b gb r e re j l jl w o b wob u s us v b vb d i k di dik s g k sg sgk |
---|---|
matchkey_str |
article:01709739:1996----::obndiolwnryosrittmnmluesmeradi |
hierarchy_sort_str |
1996 |
publishDate |
1996 |
allfields |
10.1007/BF02907000 doi (DE-627)OLC209192895X (DE-He213)BF02907000-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ de Boer, W. verfasserin aut Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling Burkart, G. aut Ehret, R. aut Lautenbacher, J. aut Oberschulte-Beckmann, W. aut Schwickerath, U. aut Bednyakov, V. aut Kazakov, D. I. aut Kovalenko, S. G. aut Enthalten in Zeitschrift für Physik Springer-Verlag, 1979 71(1996), 3 vom: 01. Juli, Seite 415-430 (DE-627)130618799 (DE-600)795252-1 (DE-576)016125487 0170-9739 nnns volume:71 year:1996 number:3 day:01 month:07 pages:415-430 https://doi.org/10.1007/BF02907000 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 AR 71 1996 3 01 07 415-430 |
spelling |
10.1007/BF02907000 doi (DE-627)OLC209192895X (DE-He213)BF02907000-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ de Boer, W. verfasserin aut Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling Burkart, G. aut Ehret, R. aut Lautenbacher, J. aut Oberschulte-Beckmann, W. aut Schwickerath, U. aut Bednyakov, V. aut Kazakov, D. I. aut Kovalenko, S. G. aut Enthalten in Zeitschrift für Physik Springer-Verlag, 1979 71(1996), 3 vom: 01. Juli, Seite 415-430 (DE-627)130618799 (DE-600)795252-1 (DE-576)016125487 0170-9739 nnns volume:71 year:1996 number:3 day:01 month:07 pages:415-430 https://doi.org/10.1007/BF02907000 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 AR 71 1996 3 01 07 415-430 |
allfields_unstemmed |
10.1007/BF02907000 doi (DE-627)OLC209192895X (DE-He213)BF02907000-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ de Boer, W. verfasserin aut Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling Burkart, G. aut Ehret, R. aut Lautenbacher, J. aut Oberschulte-Beckmann, W. aut Schwickerath, U. aut Bednyakov, V. aut Kazakov, D. I. aut Kovalenko, S. G. aut Enthalten in Zeitschrift für Physik Springer-Verlag, 1979 71(1996), 3 vom: 01. Juli, Seite 415-430 (DE-627)130618799 (DE-600)795252-1 (DE-576)016125487 0170-9739 nnns volume:71 year:1996 number:3 day:01 month:07 pages:415-430 https://doi.org/10.1007/BF02907000 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 AR 71 1996 3 01 07 415-430 |
allfieldsGer |
10.1007/BF02907000 doi (DE-627)OLC209192895X (DE-He213)BF02907000-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ de Boer, W. verfasserin aut Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling Burkart, G. aut Ehret, R. aut Lautenbacher, J. aut Oberschulte-Beckmann, W. aut Schwickerath, U. aut Bednyakov, V. aut Kazakov, D. I. aut Kovalenko, S. G. aut Enthalten in Zeitschrift für Physik Springer-Verlag, 1979 71(1996), 3 vom: 01. Juli, Seite 415-430 (DE-627)130618799 (DE-600)795252-1 (DE-576)016125487 0170-9739 nnns volume:71 year:1996 number:3 day:01 month:07 pages:415-430 https://doi.org/10.1007/BF02907000 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 AR 71 1996 3 01 07 415-430 |
allfieldsSound |
10.1007/BF02907000 doi (DE-627)OLC209192895X (DE-He213)BF02907000-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ de Boer, W. verfasserin aut Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling Burkart, G. aut Ehret, R. aut Lautenbacher, J. aut Oberschulte-Beckmann, W. aut Schwickerath, U. aut Bednyakov, V. aut Kazakov, D. I. aut Kovalenko, S. G. aut Enthalten in Zeitschrift für Physik Springer-Verlag, 1979 71(1996), 3 vom: 01. Juli, Seite 415-430 (DE-627)130618799 (DE-600)795252-1 (DE-576)016125487 0170-9739 nnns volume:71 year:1996 number:3 day:01 month:07 pages:415-430 https://doi.org/10.1007/BF02907000 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 AR 71 1996 3 01 07 415-430 |
language |
English |
source |
Enthalten in Zeitschrift für Physik 71(1996), 3 vom: 01. Juli, Seite 415-430 volume:71 year:1996 number:3 day:01 month:07 pages:415-430 |
sourceStr |
Enthalten in Zeitschrift für Physik 71(1996), 3 vom: 01. Juli, Seite 415-430 volume:71 year:1996 number:3 day:01 month:07 pages:415-430 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Zeitschrift für Physik |
authorswithroles_txt_mv |
de Boer, W. @@aut@@ Burkart, G. @@aut@@ Ehret, R. @@aut@@ Lautenbacher, J. @@aut@@ Oberschulte-Beckmann, W. @@aut@@ Schwickerath, U. @@aut@@ Bednyakov, V. @@aut@@ Kazakov, D. I. @@aut@@ Kovalenko, S. G. @@aut@@ |
publishDateDaySort_date |
1996-07-01T00:00:00Z |
hierarchy_top_id |
130618799 |
dewey-sort |
3530 |
id |
OLC209192895X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC209192895X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331082416.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230331s1996 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02907000</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC209192895X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02907000-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">de Boer, W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1996</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yukawa Coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroweak Symmetry Breaking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Higgs Potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gluino Mass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trilinear Coupling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burkart, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehret, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lautenbacher, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oberschulte-Beckmann, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwickerath, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bednyakov, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazakov, D. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovalenko, S. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für Physik</subfield><subfield code="d">Springer-Verlag, 1979</subfield><subfield code="g">71(1996), 3 vom: 01. Juli, Seite 415-430</subfield><subfield code="w">(DE-627)130618799</subfield><subfield code="w">(DE-600)795252-1</subfield><subfield code="w">(DE-576)016125487</subfield><subfield code="x">0170-9739</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:1996</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:415-430</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02907000</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">1996</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">415-430</subfield></datafield></record></collection>
|
author |
de Boer, W. |
spellingShingle |
de Boer, W. ddc 530 misc Yukawa Coupling misc Electroweak Symmetry Breaking misc Higgs Potential misc Gluino Mass misc Trilinear Coupling Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II |
authorStr |
de Boer, W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130618799 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0170-9739 |
topic_title |
530 VZ Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II Yukawa Coupling Electroweak Symmetry Breaking Higgs Potential Gluino Mass Trilinear Coupling |
topic |
ddc 530 misc Yukawa Coupling misc Electroweak Symmetry Breaking misc Higgs Potential misc Gluino Mass misc Trilinear Coupling |
topic_unstemmed |
ddc 530 misc Yukawa Coupling misc Electroweak Symmetry Breaking misc Higgs Potential misc Gluino Mass misc Trilinear Coupling |
topic_browse |
ddc 530 misc Yukawa Coupling misc Electroweak Symmetry Breaking misc Higgs Potential misc Gluino Mass misc Trilinear Coupling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Zeitschrift für Physik |
hierarchy_parent_id |
130618799 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Zeitschrift für Physik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130618799 (DE-600)795252-1 (DE-576)016125487 |
title |
Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II |
ctrlnum |
(DE-627)OLC209192895X (DE-He213)BF02907000-p |
title_full |
Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II |
author_sort |
de Boer, W. |
journal |
Zeitschrift für Physik |
journalStr |
Zeitschrift für Physik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1996 |
contenttype_str_mv |
txt |
container_start_page |
415 |
author_browse |
de Boer, W. Burkart, G. Ehret, R. Lautenbacher, J. Oberschulte-Beckmann, W. Schwickerath, U. Bednyakov, V. Kazakov, D. I. Kovalenko, S. G. |
container_volume |
71 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
de Boer, W. |
doi_str_mv |
10.1007/BF02907000 |
dewey-full |
530 |
title_sort |
combined fit of low energy constraints to minimal supersymmetry and discovery potential at lep ii |
title_auth |
Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II |
abstract |
Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. © Springer-Verlag 1996 |
abstractGer |
Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. © Springer-Verlag 1996 |
abstract_unstemmed |
Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space. © Springer-Verlag 1996 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_130 GBV_ILN_267 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2409 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 |
container_issue |
3 |
title_short |
Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II |
url |
https://doi.org/10.1007/BF02907000 |
remote_bool |
false |
author2 |
Burkart, G. Ehret, R. Lautenbacher, J. Oberschulte-Beckmann, W. Schwickerath, U. Bednyakov, V. Kazakov, D. I. Kovalenko, S. G. |
author2Str |
Burkart, G. Ehret, R. Lautenbacher, J. Oberschulte-Beckmann, W. Schwickerath, U. Bednyakov, V. Kazakov, D. I. Kovalenko, S. G. |
ppnlink |
130618799 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02907000 |
up_date |
2024-07-04T10:39:27.986Z |
_version_ |
1803644638841536512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC209192895X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331082416.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230331s1996 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02907000</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC209192895X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02907000-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">de Boer, W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined fit of low energy constraints to minimal supersymmetry and discovery potential at LEP II</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1996</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ0 boson mass to the top quark mass. From ax2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25−50. For both cases we find a uniquex2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tomb from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark intosγ and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb→sγ rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yukawa Coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroweak Symmetry Breaking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Higgs Potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gluino Mass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trilinear Coupling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burkart, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehret, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lautenbacher, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oberschulte-Beckmann, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwickerath, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bednyakov, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kazakov, D. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovalenko, S. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für Physik</subfield><subfield code="d">Springer-Verlag, 1979</subfield><subfield code="g">71(1996), 3 vom: 01. Juli, Seite 415-430</subfield><subfield code="w">(DE-627)130618799</subfield><subfield code="w">(DE-600)795252-1</subfield><subfield code="w">(DE-576)016125487</subfield><subfield code="x">0170-9739</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:1996</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:415-430</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02907000</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">1996</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">415-430</subfield></datafield></record></collection>
|
score |
7.4008837 |