Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar
Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing st...
Ausführliche Beschreibung
Autor*in: |
Watson, Ja’Mar A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© American Astronautical Society 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of the astronautical sciences - Springer US, 1958, 66(2019), 4 vom: 22. Mai, Seite 404-418 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2019 ; number:4 ; day:22 ; month:05 ; pages:404-418 |
Links: |
---|
DOI / URN: |
10.1007/s40295-019-00174-3 |
---|
Katalog-ID: |
OLC2094905373 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2094905373 | ||
003 | DE-627 | ||
005 | 20230504121343.0 | ||
007 | tu | ||
008 | 230331s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s40295-019-00174-3 |2 doi | |
035 | |a (DE-627)OLC2094905373 | ||
035 | |a (DE-He213)s40295-019-00174-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Watson, Ja’Mar A. |e verfasserin |0 (orcid)0000-0002-3592-6300 |4 aut | |
245 | 1 | 0 | |a Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © American Astronautical Society 2019 | ||
520 | |a Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. | ||
650 | 4 | |a Mission utility simulation | |
650 | 4 | |a Space mission engineering | |
650 | 4 | |a Surrogate modeling | |
650 | 4 | |a Apollo missions | |
650 | 4 | |a Progspexion | |
773 | 0 | 8 | |i Enthalten in |t The journal of the astronautical sciences |d Springer US, 1958 |g 66(2019), 4 vom: 22. Mai, Seite 404-418 |w (DE-627)12935905X |w (DE-600)160505-7 |w (DE-576)014731371 |x 0021-9142 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2019 |g number:4 |g day:22 |g month:05 |g pages:404-418 |
856 | 4 | 1 | |u https://doi.org/10.1007/s40295-019-00174-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 66 |j 2019 |e 4 |b 22 |c 05 |h 404-418 |
author_variant |
j a w ja jaw |
---|---|
matchkey_str |
article:00219142:2019----::oeigocniepcmsintltsmltow |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s40295-019-00174-3 doi (DE-627)OLC2094905373 (DE-He213)s40295-019-00174-3-p DE-627 ger DE-627 rakwb eng 620 VZ Watson, Ja’Mar A. verfasserin (orcid)0000-0002-3592-6300 aut Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Astronautical Society 2019 Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion Enthalten in The journal of the astronautical sciences Springer US, 1958 66(2019), 4 vom: 22. Mai, Seite 404-418 (DE-627)12935905X (DE-600)160505-7 (DE-576)014731371 0021-9142 nnns volume:66 year:2019 number:4 day:22 month:05 pages:404-418 https://doi.org/10.1007/s40295-019-00174-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2018 AR 66 2019 4 22 05 404-418 |
spelling |
10.1007/s40295-019-00174-3 doi (DE-627)OLC2094905373 (DE-He213)s40295-019-00174-3-p DE-627 ger DE-627 rakwb eng 620 VZ Watson, Ja’Mar A. verfasserin (orcid)0000-0002-3592-6300 aut Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Astronautical Society 2019 Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion Enthalten in The journal of the astronautical sciences Springer US, 1958 66(2019), 4 vom: 22. Mai, Seite 404-418 (DE-627)12935905X (DE-600)160505-7 (DE-576)014731371 0021-9142 nnns volume:66 year:2019 number:4 day:22 month:05 pages:404-418 https://doi.org/10.1007/s40295-019-00174-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2018 AR 66 2019 4 22 05 404-418 |
allfields_unstemmed |
10.1007/s40295-019-00174-3 doi (DE-627)OLC2094905373 (DE-He213)s40295-019-00174-3-p DE-627 ger DE-627 rakwb eng 620 VZ Watson, Ja’Mar A. verfasserin (orcid)0000-0002-3592-6300 aut Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Astronautical Society 2019 Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion Enthalten in The journal of the astronautical sciences Springer US, 1958 66(2019), 4 vom: 22. Mai, Seite 404-418 (DE-627)12935905X (DE-600)160505-7 (DE-576)014731371 0021-9142 nnns volume:66 year:2019 number:4 day:22 month:05 pages:404-418 https://doi.org/10.1007/s40295-019-00174-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2018 AR 66 2019 4 22 05 404-418 |
allfieldsGer |
10.1007/s40295-019-00174-3 doi (DE-627)OLC2094905373 (DE-He213)s40295-019-00174-3-p DE-627 ger DE-627 rakwb eng 620 VZ Watson, Ja’Mar A. verfasserin (orcid)0000-0002-3592-6300 aut Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Astronautical Society 2019 Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion Enthalten in The journal of the astronautical sciences Springer US, 1958 66(2019), 4 vom: 22. Mai, Seite 404-418 (DE-627)12935905X (DE-600)160505-7 (DE-576)014731371 0021-9142 nnns volume:66 year:2019 number:4 day:22 month:05 pages:404-418 https://doi.org/10.1007/s40295-019-00174-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2018 AR 66 2019 4 22 05 404-418 |
allfieldsSound |
10.1007/s40295-019-00174-3 doi (DE-627)OLC2094905373 (DE-He213)s40295-019-00174-3-p DE-627 ger DE-627 rakwb eng 620 VZ Watson, Ja’Mar A. verfasserin (orcid)0000-0002-3592-6300 aut Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © American Astronautical Society 2019 Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion Enthalten in The journal of the astronautical sciences Springer US, 1958 66(2019), 4 vom: 22. Mai, Seite 404-418 (DE-627)12935905X (DE-600)160505-7 (DE-576)014731371 0021-9142 nnns volume:66 year:2019 number:4 day:22 month:05 pages:404-418 https://doi.org/10.1007/s40295-019-00174-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2018 AR 66 2019 4 22 05 404-418 |
language |
English |
source |
Enthalten in The journal of the astronautical sciences 66(2019), 4 vom: 22. Mai, Seite 404-418 volume:66 year:2019 number:4 day:22 month:05 pages:404-418 |
sourceStr |
Enthalten in The journal of the astronautical sciences 66(2019), 4 vom: 22. Mai, Seite 404-418 volume:66 year:2019 number:4 day:22 month:05 pages:404-418 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
The journal of the astronautical sciences |
authorswithroles_txt_mv |
Watson, Ja’Mar A. @@aut@@ |
publishDateDaySort_date |
2019-05-22T00:00:00Z |
hierarchy_top_id |
12935905X |
dewey-sort |
3620 |
id |
OLC2094905373 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2094905373</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504121343.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230331s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-019-00174-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2094905373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s40295-019-00174-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watson, Ja’Mar A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3592-6300</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mission utility simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space mission engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogate modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apollo missions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Progspexion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of the astronautical sciences</subfield><subfield code="d">Springer US, 1958</subfield><subfield code="g">66(2019), 4 vom: 22. Mai, Seite 404-418</subfield><subfield code="w">(DE-627)12935905X</subfield><subfield code="w">(DE-600)160505-7</subfield><subfield code="w">(DE-576)014731371</subfield><subfield code="x">0021-9142</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:404-418</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s40295-019-00174-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">404-418</subfield></datafield></record></collection>
|
author |
Watson, Ja’Mar A. |
spellingShingle |
Watson, Ja’Mar A. ddc 620 misc Mission utility simulation misc Space mission engineering misc Surrogate modeling misc Apollo missions misc Progspexion Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar |
authorStr |
Watson, Ja’Mar A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12935905X |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-9142 |
topic_title |
620 VZ Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar Mission utility simulation Space mission engineering Surrogate modeling Apollo missions Progspexion |
topic |
ddc 620 misc Mission utility simulation misc Space mission engineering misc Surrogate modeling misc Apollo missions misc Progspexion |
topic_unstemmed |
ddc 620 misc Mission utility simulation misc Space mission engineering misc Surrogate modeling misc Apollo missions misc Progspexion |
topic_browse |
ddc 620 misc Mission utility simulation misc Space mission engineering misc Surrogate modeling misc Apollo missions misc Progspexion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The journal of the astronautical sciences |
hierarchy_parent_id |
12935905X |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
The journal of the astronautical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12935905X (DE-600)160505-7 (DE-576)014731371 |
title |
Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar |
ctrlnum |
(DE-627)OLC2094905373 (DE-He213)s40295-019-00174-3-p |
title_full |
Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar |
author_sort |
Watson, Ja’Mar A. |
journal |
The journal of the astronautical sciences |
journalStr |
The journal of the astronautical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
404 |
author_browse |
Watson, Ja’Mar A. |
container_volume |
66 |
class |
620 VZ |
format_se |
Aufsätze |
author-letter |
Watson, Ja’Mar A. |
doi_str_mv |
10.1007/s40295-019-00174-3 |
normlink |
(ORCID)0000-0002-3592-6300 |
normlink_prefix_str_mv |
(orcid)0000-0002-3592-6300 |
dewey-full |
620 |
title_sort |
modeling for concise space mission utility simulation with apollo as exemplar |
title_auth |
Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar |
abstract |
Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. © American Astronautical Society 2019 |
abstractGer |
Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. © American Astronautical Society 2019 |
abstract_unstemmed |
Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation. © American Astronautical Society 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_70 GBV_ILN_2018 |
container_issue |
4 |
title_short |
Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar |
url |
https://doi.org/10.1007/s40295-019-00174-3 |
remote_bool |
false |
ppnlink |
12935905X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40295-019-00174-3 |
up_date |
2024-07-03T20:55:55.886Z |
_version_ |
1803592826499366912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2094905373</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504121343.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230331s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-019-00174-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2094905373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s40295-019-00174-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watson, Ja’Mar A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3592-6300</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling for Concise Space Mission Utility Simulation with Apollo as Exemplar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Presented is a stochastic modeling method enabling rapid yet comprehensive space mission utility simulation. The method facilitates multivariate analysis with concurrent tradespace exploration, risk assessment, and holistic design while simultaneously exploring, assessing, and developing statistically validated concepts of prospective space missions. Modeling is achieved through the synergistic integration of statistical mechanics, blackbox, Bayesian, ansatz, and analytics techniques. The method is verified for its ability to accurately depict a human spaceflight mission and validated for its ability to perform mission utility analysis by backtesting the Apollo 11–17 missions to the Moon through Monte Carlo simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mission utility simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space mission engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surrogate modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apollo missions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Progspexion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of the astronautical sciences</subfield><subfield code="d">Springer US, 1958</subfield><subfield code="g">66(2019), 4 vom: 22. Mai, Seite 404-418</subfield><subfield code="w">(DE-627)12935905X</subfield><subfield code="w">(DE-600)160505-7</subfield><subfield code="w">(DE-576)014731371</subfield><subfield code="x">0021-9142</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:404-418</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s40295-019-00174-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">404-418</subfield></datafield></record></collection>
|
score |
7.400757 |