Meromorphic quadratic differentials with prescribed singularities
Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability...
Ausführliche Beschreibung
Autor*in: |
Diaz-Marin, Homero G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2000 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Sociedade Brasileira de Matemática 2000 |
---|
Übergeordnetes Werk: |
Enthalten in: Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society - Springer-Verlag, 1970, 31(2000), 2 vom: Juni, Seite 189-204 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2000 ; number:2 ; month:06 ; pages:189-204 |
Links: |
---|
DOI / URN: |
10.1007/BF01244244 |
---|
Katalog-ID: |
OLC2107394644 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2107394644 | ||
003 | DE-627 | ||
005 | 20230502122115.0 | ||
007 | tu | ||
008 | 230502s2000 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01244244 |2 doi | |
035 | |a (DE-627)OLC2107394644 | ||
035 | |a (DE-He213)BF01244244-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Diaz-Marin, Homero G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Meromorphic quadratic differentials with prescribed singularities |
264 | 1 | |c 2000 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Sociedade Brasileira de Matemática 2000 | ||
520 | |a Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. | ||
650 | 4 | |a Riemann surface | |
650 | 4 | |a singular foliation | |
650 | 4 | |a quadratic differential | |
650 | 4 | |a meromorphic differential | |
773 | 0 | 8 | |i Enthalten in |t Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society |d Springer-Verlag, 1970 |g 31(2000), 2 vom: Juni, Seite 189-204 |w (DE-627)130460958 |w (DE-600)730388-9 |w (DE-576)01605573X |x 0100-3569 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2000 |g number:2 |g month:06 |g pages:189-204 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01244244 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 31 |j 2000 |e 2 |c 06 |h 189-204 |
author_variant |
h g d m hgd hgdm |
---|---|
matchkey_str |
article:01003569:2000----::eoopiqartcifrnilwtpeci |
hierarchy_sort_str |
2000 |
publishDate |
2000 |
allfields |
10.1007/BF01244244 doi (DE-627)OLC2107394644 (DE-He213)BF01244244-p DE-627 ger DE-627 rakwb eng 510 000 VZ 17,1 ssgn Diaz-Marin, Homero G. verfasserin aut Meromorphic quadratic differentials with prescribed singularities 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Sociedade Brasileira de Matemática 2000 Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. Riemann surface singular foliation quadratic differential meromorphic differential Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society Springer-Verlag, 1970 31(2000), 2 vom: Juni, Seite 189-204 (DE-627)130460958 (DE-600)730388-9 (DE-576)01605573X 0100-3569 nnns volume:31 year:2000 number:2 month:06 pages:189-204 https://doi.org/10.1007/BF01244244 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 31 2000 2 06 189-204 |
spelling |
10.1007/BF01244244 doi (DE-627)OLC2107394644 (DE-He213)BF01244244-p DE-627 ger DE-627 rakwb eng 510 000 VZ 17,1 ssgn Diaz-Marin, Homero G. verfasserin aut Meromorphic quadratic differentials with prescribed singularities 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Sociedade Brasileira de Matemática 2000 Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. Riemann surface singular foliation quadratic differential meromorphic differential Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society Springer-Verlag, 1970 31(2000), 2 vom: Juni, Seite 189-204 (DE-627)130460958 (DE-600)730388-9 (DE-576)01605573X 0100-3569 nnns volume:31 year:2000 number:2 month:06 pages:189-204 https://doi.org/10.1007/BF01244244 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 31 2000 2 06 189-204 |
allfields_unstemmed |
10.1007/BF01244244 doi (DE-627)OLC2107394644 (DE-He213)BF01244244-p DE-627 ger DE-627 rakwb eng 510 000 VZ 17,1 ssgn Diaz-Marin, Homero G. verfasserin aut Meromorphic quadratic differentials with prescribed singularities 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Sociedade Brasileira de Matemática 2000 Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. Riemann surface singular foliation quadratic differential meromorphic differential Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society Springer-Verlag, 1970 31(2000), 2 vom: Juni, Seite 189-204 (DE-627)130460958 (DE-600)730388-9 (DE-576)01605573X 0100-3569 nnns volume:31 year:2000 number:2 month:06 pages:189-204 https://doi.org/10.1007/BF01244244 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 31 2000 2 06 189-204 |
allfieldsGer |
10.1007/BF01244244 doi (DE-627)OLC2107394644 (DE-He213)BF01244244-p DE-627 ger DE-627 rakwb eng 510 000 VZ 17,1 ssgn Diaz-Marin, Homero G. verfasserin aut Meromorphic quadratic differentials with prescribed singularities 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Sociedade Brasileira de Matemática 2000 Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. Riemann surface singular foliation quadratic differential meromorphic differential Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society Springer-Verlag, 1970 31(2000), 2 vom: Juni, Seite 189-204 (DE-627)130460958 (DE-600)730388-9 (DE-576)01605573X 0100-3569 nnns volume:31 year:2000 number:2 month:06 pages:189-204 https://doi.org/10.1007/BF01244244 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 31 2000 2 06 189-204 |
allfieldsSound |
10.1007/BF01244244 doi (DE-627)OLC2107394644 (DE-He213)BF01244244-p DE-627 ger DE-627 rakwb eng 510 000 VZ 17,1 ssgn Diaz-Marin, Homero G. verfasserin aut Meromorphic quadratic differentials with prescribed singularities 2000 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Sociedade Brasileira de Matemática 2000 Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. Riemann surface singular foliation quadratic differential meromorphic differential Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society Springer-Verlag, 1970 31(2000), 2 vom: Juni, Seite 189-204 (DE-627)130460958 (DE-600)730388-9 (DE-576)01605573X 0100-3569 nnns volume:31 year:2000 number:2 month:06 pages:189-204 https://doi.org/10.1007/BF01244244 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 AR 31 2000 2 06 189-204 |
language |
English |
source |
Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society 31(2000), 2 vom: Juni, Seite 189-204 volume:31 year:2000 number:2 month:06 pages:189-204 |
sourceStr |
Enthalten in Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society 31(2000), 2 vom: Juni, Seite 189-204 volume:31 year:2000 number:2 month:06 pages:189-204 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Riemann surface singular foliation quadratic differential meromorphic differential |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society |
authorswithroles_txt_mv |
Diaz-Marin, Homero G. @@aut@@ |
publishDateDaySort_date |
2000-06-01T00:00:00Z |
hierarchy_top_id |
130460958 |
dewey-sort |
3510 |
id |
OLC2107394644 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2107394644</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122115.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s2000 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01244244</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2107394644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01244244-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diaz-Marin, Homero G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Meromorphic quadratic differentials with prescribed singularities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Sociedade Brasileira de Matemática 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular foliation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quadratic differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meromorphic differential</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society</subfield><subfield code="d">Springer-Verlag, 1970</subfield><subfield code="g">31(2000), 2 vom: Juni, Seite 189-204</subfield><subfield code="w">(DE-627)130460958</subfield><subfield code="w">(DE-600)730388-9</subfield><subfield code="w">(DE-576)01605573X</subfield><subfield code="x">0100-3569</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:189-204</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01244244</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2000</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">189-204</subfield></datafield></record></collection>
|
author |
Diaz-Marin, Homero G. |
spellingShingle |
Diaz-Marin, Homero G. ddc 510 ssgn 17,1 misc Riemann surface misc singular foliation misc quadratic differential misc meromorphic differential Meromorphic quadratic differentials with prescribed singularities |
authorStr |
Diaz-Marin, Homero G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130460958 |
format |
Article |
dewey-ones |
510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0100-3569 |
topic_title |
510 000 VZ 17,1 ssgn Meromorphic quadratic differentials with prescribed singularities Riemann surface singular foliation quadratic differential meromorphic differential |
topic |
ddc 510 ssgn 17,1 misc Riemann surface misc singular foliation misc quadratic differential misc meromorphic differential |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Riemann surface misc singular foliation misc quadratic differential misc meromorphic differential |
topic_browse |
ddc 510 ssgn 17,1 misc Riemann surface misc singular foliation misc quadratic differential misc meromorphic differential |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society |
hierarchy_parent_id |
130460958 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130460958 (DE-600)730388-9 (DE-576)01605573X |
title |
Meromorphic quadratic differentials with prescribed singularities |
ctrlnum |
(DE-627)OLC2107394644 (DE-He213)BF01244244-p |
title_full |
Meromorphic quadratic differentials with prescribed singularities |
author_sort |
Diaz-Marin, Homero G. |
journal |
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society |
journalStr |
Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2000 |
contenttype_str_mv |
txt |
container_start_page |
189 |
author_browse |
Diaz-Marin, Homero G. |
container_volume |
31 |
class |
510 000 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Diaz-Marin, Homero G. |
doi_str_mv |
10.1007/BF01244244 |
dewey-full |
510 000 |
title_sort |
meromorphic quadratic differentials with prescribed singularities |
title_auth |
Meromorphic quadratic differentials with prescribed singularities |
abstract |
Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. © Sociedade Brasileira de Matemática 2000 |
abstractGer |
Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. © Sociedade Brasileira de Matemática 2000 |
abstract_unstemmed |
Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable. © Sociedade Brasileira de Matemática 2000 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 |
container_issue |
2 |
title_short |
Meromorphic quadratic differentials with prescribed singularities |
url |
https://doi.org/10.1007/BF01244244 |
remote_bool |
false |
ppnlink |
130460958 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01244244 |
up_date |
2024-07-04T10:16:48.723Z |
_version_ |
1803643213552025600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2107394644</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502122115.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s2000 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01244244</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2107394644</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01244244-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diaz-Marin, Homero G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Meromorphic quadratic differentials with prescribed singularities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2000</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Sociedade Brasileira de Matemática 2000</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the singular flat structure associated to any meromorphic quadratic differential on a compact Riemann surface to prove an existence theorem as follows. There exists a meromorphic quadratic differential with given orders of the poles and zeros and orientability or non orientability of the horizontal foliation, iff these prescribed topological data are admissible according to the Gauss-Bonnet Theorem, the Residue Theorem and certain conditions arising from local orientability or non orientablity considerations. Some few exceptional cases remain excluded. Thus, we generalize two previous results. One due to Masur & Smillie, which assumes that poles are at most simple; and a second one due to Muciño-Raymundo, which assumes that the horizontal foliation is orientable.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular foliation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quadratic differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meromorphic differential</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society</subfield><subfield code="d">Springer-Verlag, 1970</subfield><subfield code="g">31(2000), 2 vom: Juni, Seite 189-204</subfield><subfield code="w">(DE-627)130460958</subfield><subfield code="w">(DE-600)730388-9</subfield><subfield code="w">(DE-576)01605573X</subfield><subfield code="x">0100-3569</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2000</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:189-204</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01244244</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2000</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">189-204</subfield></datafield></record></collection>
|
score |
7.401332 |