Backward perturbation analysis for the matrix equation ATXA + BTY B = D
Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the si...
Ausführliche Beschreibung
Autor*in: |
Yang, Xing-dong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematicae applicatae sinica / English series - Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002, 27(2011), 2 vom: 12. März, Seite 281-288 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2011 ; number:2 ; day:12 ; month:03 ; pages:281-288 |
Links: |
---|
DOI / URN: |
10.1007/s10255-011-0055-0 |
---|
Katalog-ID: |
OLC2109957530 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2109957530 | ||
003 | DE-627 | ||
005 | 20230502180540.0 | ||
007 | tu | ||
008 | 230502s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10255-011-0055-0 |2 doi | |
035 | |a (DE-627)OLC2109957530 | ||
035 | |a (DE-He213)s10255-011-0055-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.80$jAngewandte Mathematik |2 bkl | ||
100 | 1 | |a Yang, Xing-dong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Backward perturbation analysis for the matrix equation ATXA + BTY B = D |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 | ||
520 | |a Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. | ||
650 | 4 | |a matrix equation | |
650 | 4 | |a backward error | |
650 | 4 | |a approximate solution | |
700 | 1 | |a Feng, Xiu-hong |4 aut | |
700 | 1 | |a He, Qing-quan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematicae applicatae sinica / English series |d Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002 |g 27(2011), 2 vom: 12. März, Seite 281-288 |w (DE-627)363762353 |w (DE-600)2106495-7 |w (DE-576)105283274 |x 0168-9673 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2011 |g number:2 |g day:12 |g month:03 |g pages:281-288 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10255-011-0055-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 31.80$jAngewandte Mathematik |q VZ |0 106419005 |0 (DE-625)106419005 |
951 | |a AR | ||
952 | |d 27 |j 2011 |e 2 |b 12 |c 03 |h 281-288 |
author_variant |
x d y xdy x h f xhf q q h qqh |
---|---|
matchkey_str |
article:01689673:2011----::akadetrainnlssotearxq |
hierarchy_sort_str |
2011 |
bklnumber |
31.80$jAngewandte Mathematik |
publishDate |
2011 |
allfields |
10.1007/s10255-011-0055-0 doi (DE-627)OLC2109957530 (DE-He213)s10255-011-0055-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Yang, Xing-dong verfasserin aut Backward perturbation analysis for the matrix equation ATXA + BTY B = D 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. matrix equation backward error approximate solution Feng, Xiu-hong aut He, Qing-quan aut Enthalten in Acta mathematicae applicatae sinica / English series Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002 27(2011), 2 vom: 12. März, Seite 281-288 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:27 year:2011 number:2 day:12 month:03 pages:281-288 https://doi.org/10.1007/s10255-011-0055-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 27 2011 2 12 03 281-288 |
spelling |
10.1007/s10255-011-0055-0 doi (DE-627)OLC2109957530 (DE-He213)s10255-011-0055-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Yang, Xing-dong verfasserin aut Backward perturbation analysis for the matrix equation ATXA + BTY B = D 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. matrix equation backward error approximate solution Feng, Xiu-hong aut He, Qing-quan aut Enthalten in Acta mathematicae applicatae sinica / English series Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002 27(2011), 2 vom: 12. März, Seite 281-288 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:27 year:2011 number:2 day:12 month:03 pages:281-288 https://doi.org/10.1007/s10255-011-0055-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 27 2011 2 12 03 281-288 |
allfields_unstemmed |
10.1007/s10255-011-0055-0 doi (DE-627)OLC2109957530 (DE-He213)s10255-011-0055-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Yang, Xing-dong verfasserin aut Backward perturbation analysis for the matrix equation ATXA + BTY B = D 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. matrix equation backward error approximate solution Feng, Xiu-hong aut He, Qing-quan aut Enthalten in Acta mathematicae applicatae sinica / English series Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002 27(2011), 2 vom: 12. März, Seite 281-288 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:27 year:2011 number:2 day:12 month:03 pages:281-288 https://doi.org/10.1007/s10255-011-0055-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 27 2011 2 12 03 281-288 |
allfieldsGer |
10.1007/s10255-011-0055-0 doi (DE-627)OLC2109957530 (DE-He213)s10255-011-0055-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Yang, Xing-dong verfasserin aut Backward perturbation analysis for the matrix equation ATXA + BTY B = D 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. matrix equation backward error approximate solution Feng, Xiu-hong aut He, Qing-quan aut Enthalten in Acta mathematicae applicatae sinica / English series Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002 27(2011), 2 vom: 12. März, Seite 281-288 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:27 year:2011 number:2 day:12 month:03 pages:281-288 https://doi.org/10.1007/s10255-011-0055-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 27 2011 2 12 03 281-288 |
allfieldsSound |
10.1007/s10255-011-0055-0 doi (DE-627)OLC2109957530 (DE-He213)s10255-011-0055-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Yang, Xing-dong verfasserin aut Backward perturbation analysis for the matrix equation ATXA + BTY B = D 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. matrix equation backward error approximate solution Feng, Xiu-hong aut He, Qing-quan aut Enthalten in Acta mathematicae applicatae sinica / English series Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002 27(2011), 2 vom: 12. März, Seite 281-288 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:27 year:2011 number:2 day:12 month:03 pages:281-288 https://doi.org/10.1007/s10255-011-0055-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 27 2011 2 12 03 281-288 |
language |
English |
source |
Enthalten in Acta mathematicae applicatae sinica / English series 27(2011), 2 vom: 12. März, Seite 281-288 volume:27 year:2011 number:2 day:12 month:03 pages:281-288 |
sourceStr |
Enthalten in Acta mathematicae applicatae sinica / English series 27(2011), 2 vom: 12. März, Seite 281-288 volume:27 year:2011 number:2 day:12 month:03 pages:281-288 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
matrix equation backward error approximate solution |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematicae applicatae sinica / English series |
authorswithroles_txt_mv |
Yang, Xing-dong @@aut@@ Feng, Xiu-hong @@aut@@ He, Qing-quan @@aut@@ |
publishDateDaySort_date |
2011-03-12T00:00:00Z |
hierarchy_top_id |
363762353 |
dewey-sort |
3510 |
id |
OLC2109957530 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2109957530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180540.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10255-011-0055-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2109957530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10255-011-0055-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Xing-dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Backward perturbation analysis for the matrix equation ATXA + BTY B = D</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">backward error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximate solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Xiu-hong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Qing-quan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematicae applicatae sinica / English series</subfield><subfield code="d">Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002</subfield><subfield code="g">27(2011), 2 vom: 12. März, Seite 281-288</subfield><subfield code="w">(DE-627)363762353</subfield><subfield code="w">(DE-600)2106495-7</subfield><subfield code="w">(DE-576)105283274</subfield><subfield code="x">0168-9673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:12</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:281-288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10255-011-0055-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419005</subfield><subfield code="0">(DE-625)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">12</subfield><subfield code="c">03</subfield><subfield code="h">281-288</subfield></datafield></record></collection>
|
author |
Yang, Xing-dong |
spellingShingle |
Yang, Xing-dong ddc 510 bkl 31.80$jAngewandte Mathematik misc matrix equation misc backward error misc approximate solution Backward perturbation analysis for the matrix equation ATXA + BTY B = D |
authorStr |
Yang, Xing-dong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)363762353 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0168-9673 |
topic_title |
510 VZ 31.80$jAngewandte Mathematik bkl Backward perturbation analysis for the matrix equation ATXA + BTY B = D matrix equation backward error approximate solution |
topic |
ddc 510 bkl 31.80$jAngewandte Mathematik misc matrix equation misc backward error misc approximate solution |
topic_unstemmed |
ddc 510 bkl 31.80$jAngewandte Mathematik misc matrix equation misc backward error misc approximate solution |
topic_browse |
ddc 510 bkl 31.80$jAngewandte Mathematik misc matrix equation misc backward error misc approximate solution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematicae applicatae sinica / English series |
hierarchy_parent_id |
363762353 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematicae applicatae sinica / English series |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 |
title |
Backward perturbation analysis for the matrix equation ATXA + BTY B = D |
ctrlnum |
(DE-627)OLC2109957530 (DE-He213)s10255-011-0055-0-p |
title_full |
Backward perturbation analysis for the matrix equation ATXA + BTY B = D |
author_sort |
Yang, Xing-dong |
journal |
Acta mathematicae applicatae sinica / English series |
journalStr |
Acta mathematicae applicatae sinica / English series |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
281 |
author_browse |
Yang, Xing-dong Feng, Xiu-hong He, Qing-quan |
container_volume |
27 |
class |
510 VZ 31.80$jAngewandte Mathematik bkl |
format_se |
Aufsätze |
author-letter |
Yang, Xing-dong |
doi_str_mv |
10.1007/s10255-011-0055-0 |
normlink |
106419005 |
normlink_prefix_str_mv |
106419005 (DE-625)106419005 |
dewey-full |
510 |
title_sort |
backward perturbation analysis for the matrix equation atxa + bty b = d |
title_auth |
Backward perturbation analysis for the matrix equation ATXA + BTY B = D |
abstract |
Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 |
abstractGer |
Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 |
abstract_unstemmed |
Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples. © Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 |
container_issue |
2 |
title_short |
Backward perturbation analysis for the matrix equation ATXA + BTY B = D |
url |
https://doi.org/10.1007/s10255-011-0055-0 |
remote_bool |
false |
author2 |
Feng, Xiu-hong He, Qing-quan |
author2Str |
Feng, Xiu-hong He, Qing-quan |
ppnlink |
363762353 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10255-011-0055-0 |
up_date |
2024-07-04T04:28:24.969Z |
_version_ |
1803621294372028416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2109957530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180540.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10255-011-0055-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2109957530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10255-011-0055-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Xing-dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Backward perturbation analysis for the matrix equation ATXA + BTY B = D</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Consider the linear matrix equation ATXA + BTY B = D, where A,B are n × n real matrices and D symmetric positive semi-definite matrix. In this paper, the normwise backward perturbation bounds for the solution of the equation are derived by applying the Brouwer fixed-point theorem and the singular value decomposition as well as the property of Kronecker product. The results are illustrated by two simple numerical examples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">matrix equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">backward error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximate solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Xiu-hong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Qing-quan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematicae applicatae sinica / English series</subfield><subfield code="d">Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society, 2002</subfield><subfield code="g">27(2011), 2 vom: 12. März, Seite 281-288</subfield><subfield code="w">(DE-627)363762353</subfield><subfield code="w">(DE-600)2106495-7</subfield><subfield code="w">(DE-576)105283274</subfield><subfield code="x">0168-9673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:12</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:281-288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10255-011-0055-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419005</subfield><subfield code="0">(DE-625)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">12</subfield><subfield code="c">03</subfield><subfield code="h">281-288</subfield></datafield></record></collection>
|
score |
7.4018173 |