A characterization of PM-compact Hamiltonian bipartite graphs
Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple P...
Ausführliche Beschreibung
Autor*in: |
Wang, Xiu-mei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematicae applicatae sinica / English series - Springer Berlin Heidelberg, 2002, 31(2015), 2 vom: Juni, Seite 313-324 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2015 ; number:2 ; month:06 ; pages:313-324 |
Links: |
---|
DOI / URN: |
10.1007/s10255-015-0475-3 |
---|
Katalog-ID: |
OLC2109963735 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2109963735 | ||
003 | DE-627 | ||
005 | 20230502180552.0 | ||
007 | tu | ||
008 | 230502s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10255-015-0475-3 |2 doi | |
035 | |a (DE-627)OLC2109963735 | ||
035 | |a (DE-He213)s10255-015-0475-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.80$jAngewandte Mathematik |2 bkl | ||
100 | 1 | |a Wang, Xiu-mei |e verfasserin |4 aut | |
245 | 1 | 0 | |a A characterization of PM-compact Hamiltonian bipartite graphs |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. | ||
650 | 4 | |a perfect matching polytope | |
650 | 4 | |a perfect-matching graph | |
650 | 4 | |a bipartite graph | |
650 | 4 | |a hamiltonian graph | |
700 | 1 | |a Yuan, Jin-jiang |4 aut | |
700 | 1 | |a Lin, Yi-xun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematicae applicatae sinica / English series |d Springer Berlin Heidelberg, 2002 |g 31(2015), 2 vom: Juni, Seite 313-324 |w (DE-627)363762353 |w (DE-600)2106495-7 |w (DE-576)105283274 |x 0168-9673 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2015 |g number:2 |g month:06 |g pages:313-324 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10255-015-0475-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 31.80$jAngewandte Mathematik |q VZ |0 106419005 |0 (DE-625)106419005 |
951 | |a AR | ||
952 | |d 31 |j 2015 |e 2 |c 06 |h 313-324 |
author_variant |
x m w xmw j j y jjy y x l yxl |
---|---|
matchkey_str |
article:01689673:2015----::caatrztoopcmataitna |
hierarchy_sort_str |
2015 |
bklnumber |
31.80$jAngewandte Mathematik |
publishDate |
2015 |
allfields |
10.1007/s10255-015-0475-3 doi (DE-627)OLC2109963735 (DE-He213)s10255-015-0475-3-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Wang, Xiu-mei verfasserin aut A characterization of PM-compact Hamiltonian bipartite graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph Yuan, Jin-jiang aut Lin, Yi-xun aut Enthalten in Acta mathematicae applicatae sinica / English series Springer Berlin Heidelberg, 2002 31(2015), 2 vom: Juni, Seite 313-324 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:31 year:2015 number:2 month:06 pages:313-324 https://doi.org/10.1007/s10255-015-0475-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 31 2015 2 06 313-324 |
spelling |
10.1007/s10255-015-0475-3 doi (DE-627)OLC2109963735 (DE-He213)s10255-015-0475-3-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Wang, Xiu-mei verfasserin aut A characterization of PM-compact Hamiltonian bipartite graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph Yuan, Jin-jiang aut Lin, Yi-xun aut Enthalten in Acta mathematicae applicatae sinica / English series Springer Berlin Heidelberg, 2002 31(2015), 2 vom: Juni, Seite 313-324 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:31 year:2015 number:2 month:06 pages:313-324 https://doi.org/10.1007/s10255-015-0475-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 31 2015 2 06 313-324 |
allfields_unstemmed |
10.1007/s10255-015-0475-3 doi (DE-627)OLC2109963735 (DE-He213)s10255-015-0475-3-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Wang, Xiu-mei verfasserin aut A characterization of PM-compact Hamiltonian bipartite graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph Yuan, Jin-jiang aut Lin, Yi-xun aut Enthalten in Acta mathematicae applicatae sinica / English series Springer Berlin Heidelberg, 2002 31(2015), 2 vom: Juni, Seite 313-324 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:31 year:2015 number:2 month:06 pages:313-324 https://doi.org/10.1007/s10255-015-0475-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 31 2015 2 06 313-324 |
allfieldsGer |
10.1007/s10255-015-0475-3 doi (DE-627)OLC2109963735 (DE-He213)s10255-015-0475-3-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Wang, Xiu-mei verfasserin aut A characterization of PM-compact Hamiltonian bipartite graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph Yuan, Jin-jiang aut Lin, Yi-xun aut Enthalten in Acta mathematicae applicatae sinica / English series Springer Berlin Heidelberg, 2002 31(2015), 2 vom: Juni, Seite 313-324 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:31 year:2015 number:2 month:06 pages:313-324 https://doi.org/10.1007/s10255-015-0475-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 31 2015 2 06 313-324 |
allfieldsSound |
10.1007/s10255-015-0475-3 doi (DE-627)OLC2109963735 (DE-He213)s10255-015-0475-3-p DE-627 ger DE-627 rakwb eng 510 VZ 31.80$jAngewandte Mathematik bkl Wang, Xiu-mei verfasserin aut A characterization of PM-compact Hamiltonian bipartite graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph Yuan, Jin-jiang aut Lin, Yi-xun aut Enthalten in Acta mathematicae applicatae sinica / English series Springer Berlin Heidelberg, 2002 31(2015), 2 vom: Juni, Seite 313-324 (DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 0168-9673 nnns volume:31 year:2015 number:2 month:06 pages:313-324 https://doi.org/10.1007/s10255-015-0475-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 31.80$jAngewandte Mathematik VZ 106419005 (DE-625)106419005 AR 31 2015 2 06 313-324 |
language |
English |
source |
Enthalten in Acta mathematicae applicatae sinica / English series 31(2015), 2 vom: Juni, Seite 313-324 volume:31 year:2015 number:2 month:06 pages:313-324 |
sourceStr |
Enthalten in Acta mathematicae applicatae sinica / English series 31(2015), 2 vom: Juni, Seite 313-324 volume:31 year:2015 number:2 month:06 pages:313-324 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematicae applicatae sinica / English series |
authorswithroles_txt_mv |
Wang, Xiu-mei @@aut@@ Yuan, Jin-jiang @@aut@@ Lin, Yi-xun @@aut@@ |
publishDateDaySort_date |
2015-06-01T00:00:00Z |
hierarchy_top_id |
363762353 |
dewey-sort |
3510 |
id |
OLC2109963735 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2109963735</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180552.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10255-015-0475-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2109963735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10255-015-0475-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xiu-mei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A characterization of PM-compact Hamiltonian bipartite graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perfect matching polytope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perfect-matching graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipartite graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hamiltonian graph</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Jin-jiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yi-xun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematicae applicatae sinica / English series</subfield><subfield code="d">Springer Berlin Heidelberg, 2002</subfield><subfield code="g">31(2015), 2 vom: Juni, Seite 313-324</subfield><subfield code="w">(DE-627)363762353</subfield><subfield code="w">(DE-600)2106495-7</subfield><subfield code="w">(DE-576)105283274</subfield><subfield code="x">0168-9673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:313-324</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10255-015-0475-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419005</subfield><subfield code="0">(DE-625)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">313-324</subfield></datafield></record></collection>
|
author |
Wang, Xiu-mei |
spellingShingle |
Wang, Xiu-mei ddc 510 bkl 31.80$jAngewandte Mathematik misc perfect matching polytope misc perfect-matching graph misc bipartite graph misc hamiltonian graph A characterization of PM-compact Hamiltonian bipartite graphs |
authorStr |
Wang, Xiu-mei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)363762353 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0168-9673 |
topic_title |
510 VZ 31.80$jAngewandte Mathematik bkl A characterization of PM-compact Hamiltonian bipartite graphs perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph |
topic |
ddc 510 bkl 31.80$jAngewandte Mathematik misc perfect matching polytope misc perfect-matching graph misc bipartite graph misc hamiltonian graph |
topic_unstemmed |
ddc 510 bkl 31.80$jAngewandte Mathematik misc perfect matching polytope misc perfect-matching graph misc bipartite graph misc hamiltonian graph |
topic_browse |
ddc 510 bkl 31.80$jAngewandte Mathematik misc perfect matching polytope misc perfect-matching graph misc bipartite graph misc hamiltonian graph |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematicae applicatae sinica / English series |
hierarchy_parent_id |
363762353 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematicae applicatae sinica / English series |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)363762353 (DE-600)2106495-7 (DE-576)105283274 |
title |
A characterization of PM-compact Hamiltonian bipartite graphs |
ctrlnum |
(DE-627)OLC2109963735 (DE-He213)s10255-015-0475-3-p |
title_full |
A characterization of PM-compact Hamiltonian bipartite graphs |
author_sort |
Wang, Xiu-mei |
journal |
Acta mathematicae applicatae sinica / English series |
journalStr |
Acta mathematicae applicatae sinica / English series |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
313 |
author_browse |
Wang, Xiu-mei Yuan, Jin-jiang Lin, Yi-xun |
container_volume |
31 |
class |
510 VZ 31.80$jAngewandte Mathematik bkl |
format_se |
Aufsätze |
author-letter |
Wang, Xiu-mei |
doi_str_mv |
10.1007/s10255-015-0475-3 |
normlink |
106419005 |
normlink_prefix_str_mv |
106419005 (DE-625)106419005 |
dewey-full |
510 |
title_sort |
a characterization of pm-compact hamiltonian bipartite graphs |
title_auth |
A characterization of PM-compact Hamiltonian bipartite graphs |
abstract |
Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph. © The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4277 |
container_issue |
2 |
title_short |
A characterization of PM-compact Hamiltonian bipartite graphs |
url |
https://doi.org/10.1007/s10255-015-0475-3 |
remote_bool |
false |
author2 |
Yuan, Jin-jiang Lin, Yi-xun |
author2Str |
Yuan, Jin-jiang Lin, Yi-xun |
ppnlink |
363762353 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10255-015-0475-3 |
up_date |
2024-07-04T04:29:28.348Z |
_version_ |
1803621360839163904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2109963735</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502180552.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10255-015-0475-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2109963735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10255-015-0475-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xiu-mei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A characterization of PM-compact Hamiltonian bipartite graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Editorial Office of AMAS & Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perfect matching polytope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perfect-matching graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipartite graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hamiltonian graph</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Jin-jiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yi-xun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematicae applicatae sinica / English series</subfield><subfield code="d">Springer Berlin Heidelberg, 2002</subfield><subfield code="g">31(2015), 2 vom: Juni, Seite 313-324</subfield><subfield code="w">(DE-627)363762353</subfield><subfield code="w">(DE-600)2106495-7</subfield><subfield code="w">(DE-576)105283274</subfield><subfield code="x">0168-9673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:313-324</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10255-015-0475-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.80$jAngewandte Mathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419005</subfield><subfield code="0">(DE-625)106419005</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">313-324</subfield></datafield></record></collection>
|
score |
7.399967 |