The steiner ratio for five points
Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for th...
Ausführliche Beschreibung
Autor*in: |
Booth, R. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1991 |
---|
Schlagwörter: |
---|
Anmerkung: |
© J.C. Baltzer AG, Scientific Publishing Company 1991 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of operations research - Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984, 33(1991), 6 vom: Juni, Seite 419-436 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:1991 ; number:6 ; month:06 ; pages:419-436 |
Links: |
---|
DOI / URN: |
10.1007/BF02071980 |
---|
Katalog-ID: |
OLC2111116300 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2111116300 | ||
003 | DE-627 | ||
005 | 20230502202346.0 | ||
007 | tu | ||
008 | 230502s1991 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02071980 |2 doi | |
035 | |a (DE-627)OLC2111116300 | ||
035 | |a (DE-He213)BF02071980-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 3,2 |2 ssgn | ||
100 | 1 | |a Booth, R. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The steiner ratio for five points |
264 | 1 | |c 1991 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © J.C. Baltzer AG, Scientific Publishing Company 1991 | ||
520 | |a Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. | ||
650 | 4 | |a Span Tree | |
650 | 4 | |a Minimal Span Tree | |
650 | 4 | |a Steiner Tree | |
650 | 4 | |a Euclidean Plane | |
650 | 4 | |a Minimal Tree | |
773 | 0 | 8 | |i Enthalten in |t Annals of operations research |d Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984 |g 33(1991), 6 vom: Juni, Seite 419-436 |w (DE-627)12964370X |w (DE-600)252629-3 |w (DE-576)018141862 |x 0254-5330 |
773 | 1 | 8 | |g volume:33 |g year:1991 |g number:6 |g month:06 |g pages:419-436 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02071980 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_4029 | ||
951 | |a AR | ||
952 | |d 33 |j 1991 |e 6 |c 06 |h 419-436 |
author_variant |
r s b rs rsb |
---|---|
matchkey_str |
article:02545330:1991----::hsenraifri |
hierarchy_sort_str |
1991 |
publishDate |
1991 |
allfields |
10.1007/BF02071980 doi (DE-627)OLC2111116300 (DE-He213)BF02071980-p DE-627 ger DE-627 rakwb eng 004 VZ 3,2 ssgn Booth, R. S. verfasserin aut The steiner ratio for five points 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © J.C. Baltzer AG, Scientific Publishing Company 1991 Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree Enthalten in Annals of operations research Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984 33(1991), 6 vom: Juni, Seite 419-436 (DE-627)12964370X (DE-600)252629-3 (DE-576)018141862 0254-5330 volume:33 year:1991 number:6 month:06 pages:419-436 https://doi.org/10.1007/BF02071980 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT GBV_ILN_90 GBV_ILN_4029 AR 33 1991 6 06 419-436 |
spelling |
10.1007/BF02071980 doi (DE-627)OLC2111116300 (DE-He213)BF02071980-p DE-627 ger DE-627 rakwb eng 004 VZ 3,2 ssgn Booth, R. S. verfasserin aut The steiner ratio for five points 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © J.C. Baltzer AG, Scientific Publishing Company 1991 Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree Enthalten in Annals of operations research Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984 33(1991), 6 vom: Juni, Seite 419-436 (DE-627)12964370X (DE-600)252629-3 (DE-576)018141862 0254-5330 volume:33 year:1991 number:6 month:06 pages:419-436 https://doi.org/10.1007/BF02071980 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT GBV_ILN_90 GBV_ILN_4029 AR 33 1991 6 06 419-436 |
allfields_unstemmed |
10.1007/BF02071980 doi (DE-627)OLC2111116300 (DE-He213)BF02071980-p DE-627 ger DE-627 rakwb eng 004 VZ 3,2 ssgn Booth, R. S. verfasserin aut The steiner ratio for five points 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © J.C. Baltzer AG, Scientific Publishing Company 1991 Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree Enthalten in Annals of operations research Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984 33(1991), 6 vom: Juni, Seite 419-436 (DE-627)12964370X (DE-600)252629-3 (DE-576)018141862 0254-5330 volume:33 year:1991 number:6 month:06 pages:419-436 https://doi.org/10.1007/BF02071980 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT GBV_ILN_90 GBV_ILN_4029 AR 33 1991 6 06 419-436 |
allfieldsGer |
10.1007/BF02071980 doi (DE-627)OLC2111116300 (DE-He213)BF02071980-p DE-627 ger DE-627 rakwb eng 004 VZ 3,2 ssgn Booth, R. S. verfasserin aut The steiner ratio for five points 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © J.C. Baltzer AG, Scientific Publishing Company 1991 Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree Enthalten in Annals of operations research Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984 33(1991), 6 vom: Juni, Seite 419-436 (DE-627)12964370X (DE-600)252629-3 (DE-576)018141862 0254-5330 volume:33 year:1991 number:6 month:06 pages:419-436 https://doi.org/10.1007/BF02071980 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT GBV_ILN_90 GBV_ILN_4029 AR 33 1991 6 06 419-436 |
allfieldsSound |
10.1007/BF02071980 doi (DE-627)OLC2111116300 (DE-He213)BF02071980-p DE-627 ger DE-627 rakwb eng 004 VZ 3,2 ssgn Booth, R. S. verfasserin aut The steiner ratio for five points 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © J.C. Baltzer AG, Scientific Publishing Company 1991 Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree Enthalten in Annals of operations research Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984 33(1991), 6 vom: Juni, Seite 419-436 (DE-627)12964370X (DE-600)252629-3 (DE-576)018141862 0254-5330 volume:33 year:1991 number:6 month:06 pages:419-436 https://doi.org/10.1007/BF02071980 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT GBV_ILN_90 GBV_ILN_4029 AR 33 1991 6 06 419-436 |
language |
English |
source |
Enthalten in Annals of operations research 33(1991), 6 vom: Juni, Seite 419-436 volume:33 year:1991 number:6 month:06 pages:419-436 |
sourceStr |
Enthalten in Annals of operations research 33(1991), 6 vom: Juni, Seite 419-436 volume:33 year:1991 number:6 month:06 pages:419-436 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Annals of operations research |
authorswithroles_txt_mv |
Booth, R. S. @@aut@@ |
publishDateDaySort_date |
1991-06-01T00:00:00Z |
hierarchy_top_id |
12964370X |
dewey-sort |
14 |
id |
OLC2111116300 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2111116300</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502202346.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s1991 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02071980</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2111116300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02071980-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Booth, R. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The steiner ratio for five points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© J.C. Baltzer AG, Scientific Publishing Company 1991</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steiner Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Tree</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of operations research</subfield><subfield code="d">Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984</subfield><subfield code="g">33(1991), 6 vom: Juni, Seite 419-436</subfield><subfield code="w">(DE-627)12964370X</subfield><subfield code="w">(DE-600)252629-3</subfield><subfield code="w">(DE-576)018141862</subfield><subfield code="x">0254-5330</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:419-436</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02071980</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1991</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">419-436</subfield></datafield></record></collection>
|
author |
Booth, R. S. |
spellingShingle |
Booth, R. S. ddc 004 ssgn 3,2 misc Span Tree misc Minimal Span Tree misc Steiner Tree misc Euclidean Plane misc Minimal Tree The steiner ratio for five points |
authorStr |
Booth, R. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12964370X |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0254-5330 |
topic_title |
004 VZ 3,2 ssgn The steiner ratio for five points Span Tree Minimal Span Tree Steiner Tree Euclidean Plane Minimal Tree |
topic |
ddc 004 ssgn 3,2 misc Span Tree misc Minimal Span Tree misc Steiner Tree misc Euclidean Plane misc Minimal Tree |
topic_unstemmed |
ddc 004 ssgn 3,2 misc Span Tree misc Minimal Span Tree misc Steiner Tree misc Euclidean Plane misc Minimal Tree |
topic_browse |
ddc 004 ssgn 3,2 misc Span Tree misc Minimal Span Tree misc Steiner Tree misc Euclidean Plane misc Minimal Tree |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of operations research |
hierarchy_parent_id |
12964370X |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Annals of operations research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12964370X (DE-600)252629-3 (DE-576)018141862 |
title |
The steiner ratio for five points |
ctrlnum |
(DE-627)OLC2111116300 (DE-He213)BF02071980-p |
title_full |
The steiner ratio for five points |
author_sort |
Booth, R. S. |
journal |
Annals of operations research |
journalStr |
Annals of operations research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1991 |
contenttype_str_mv |
txt |
container_start_page |
419 |
author_browse |
Booth, R. S. |
container_volume |
33 |
class |
004 VZ 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Booth, R. S. |
doi_str_mv |
10.1007/BF02071980 |
dewey-full |
004 |
title_sort |
the steiner ratio for five points |
title_auth |
The steiner ratio for five points |
abstract |
Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. © J.C. Baltzer AG, Scientific Publishing Company 1991 |
abstractGer |
Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. © J.C. Baltzer AG, Scientific Publishing Company 1991 |
abstract_unstemmed |
Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees. © J.C. Baltzer AG, Scientific Publishing Company 1991 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT GBV_ILN_90 GBV_ILN_4029 |
container_issue |
6 |
title_short |
The steiner ratio for five points |
url |
https://doi.org/10.1007/BF02071980 |
remote_bool |
false |
ppnlink |
12964370X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02071980 |
up_date |
2024-07-04T08:46:13.033Z |
_version_ |
1803637513818996736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2111116300</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502202346.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230502s1991 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02071980</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2111116300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02071980-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Booth, R. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The steiner ratio for five points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© J.C. Baltzer AG, Scientific Publishing Company 1991</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It was conjectured by Gilbert and Pollak [5] that for any finite set of points in the Euclidean plane, the ratio of the length of a Steiner minimal tree to the length of a minimal spanning tree is at least √3/2. The present paper proves the conjecture for five points, using a formula for the length of full Steiner trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steiner Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean Plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Tree</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of operations research</subfield><subfield code="d">Baltzer Science Publishers, Baarn/Kluwer Academic Publishers, 1984</subfield><subfield code="g">33(1991), 6 vom: Juni, Seite 419-436</subfield><subfield code="w">(DE-627)12964370X</subfield><subfield code="w">(DE-600)252629-3</subfield><subfield code="w">(DE-576)018141862</subfield><subfield code="x">0254-5330</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:419-436</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02071980</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1991</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">419-436</subfield></datafield></record></collection>
|
score |
7.4002686 |