Physical vacuum properties and internal space dimension
Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dir...
Ausführliche Beschreibung
Autor*in: |
Gorbatenko, M. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: General relativity and gravitation - Springer US, 1970, 37(2005), 10 vom: Okt., Seite 1705-1718 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2005 ; number:10 ; month:10 ; pages:1705-1718 |
Links: |
---|
DOI / URN: |
10.1007/s10714-005-0153-5 |
---|
Katalog-ID: |
OLC2113775034 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2113775034 | ||
003 | DE-627 | ||
005 | 20230503063835.0 | ||
007 | tu | ||
008 | 230503s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10714-005-0153-5 |2 doi | |
035 | |a (DE-627)OLC2113775034 | ||
035 | |a (DE-He213)s10714-005-0153-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Gorbatenko, M. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Physical vacuum properties and internal space dimension |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2005 | ||
520 | |a Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. | ||
650 | 4 | |a Dirac matrix | |
650 | 4 | |a Vacuum fluctuation | |
700 | 1 | |a Pushkin, A. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t General relativity and gravitation |d Springer US, 1970 |g 37(2005), 10 vom: Okt., Seite 1705-1718 |w (DE-627)129605735 |w (DE-600)242130-6 |w (DE-576)015100022 |x 0001-7701 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2005 |g number:10 |g month:10 |g pages:1705-1718 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10714-005-0153-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2409 | ||
951 | |a AR | ||
952 | |d 37 |j 2005 |e 10 |c 10 |h 1705-1718 |
author_variant |
m v g mv mvg a v p av avp |
---|---|
matchkey_str |
article:00017701:2005----::hsclaumrprisnitras |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s10714-005-0153-5 doi (DE-627)OLC2113775034 (DE-He213)s10714-005-0153-5-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Gorbatenko, M. V. verfasserin aut Physical vacuum properties and internal space dimension 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2005 Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. Dirac matrix Vacuum fluctuation Pushkin, A. V. aut Enthalten in General relativity and gravitation Springer US, 1970 37(2005), 10 vom: Okt., Seite 1705-1718 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:37 year:2005 number:10 month:10 pages:1705-1718 https://doi.org/10.1007/s10714-005-0153-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2009 GBV_ILN_2409 AR 37 2005 10 10 1705-1718 |
spelling |
10.1007/s10714-005-0153-5 doi (DE-627)OLC2113775034 (DE-He213)s10714-005-0153-5-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Gorbatenko, M. V. verfasserin aut Physical vacuum properties and internal space dimension 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2005 Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. Dirac matrix Vacuum fluctuation Pushkin, A. V. aut Enthalten in General relativity and gravitation Springer US, 1970 37(2005), 10 vom: Okt., Seite 1705-1718 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:37 year:2005 number:10 month:10 pages:1705-1718 https://doi.org/10.1007/s10714-005-0153-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2009 GBV_ILN_2409 AR 37 2005 10 10 1705-1718 |
allfields_unstemmed |
10.1007/s10714-005-0153-5 doi (DE-627)OLC2113775034 (DE-He213)s10714-005-0153-5-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Gorbatenko, M. V. verfasserin aut Physical vacuum properties and internal space dimension 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2005 Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. Dirac matrix Vacuum fluctuation Pushkin, A. V. aut Enthalten in General relativity and gravitation Springer US, 1970 37(2005), 10 vom: Okt., Seite 1705-1718 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:37 year:2005 number:10 month:10 pages:1705-1718 https://doi.org/10.1007/s10714-005-0153-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2009 GBV_ILN_2409 AR 37 2005 10 10 1705-1718 |
allfieldsGer |
10.1007/s10714-005-0153-5 doi (DE-627)OLC2113775034 (DE-He213)s10714-005-0153-5-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Gorbatenko, M. V. verfasserin aut Physical vacuum properties and internal space dimension 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2005 Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. Dirac matrix Vacuum fluctuation Pushkin, A. V. aut Enthalten in General relativity and gravitation Springer US, 1970 37(2005), 10 vom: Okt., Seite 1705-1718 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:37 year:2005 number:10 month:10 pages:1705-1718 https://doi.org/10.1007/s10714-005-0153-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2009 GBV_ILN_2409 AR 37 2005 10 10 1705-1718 |
allfieldsSound |
10.1007/s10714-005-0153-5 doi (DE-627)OLC2113775034 (DE-He213)s10714-005-0153-5-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Gorbatenko, M. V. verfasserin aut Physical vacuum properties and internal space dimension 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2005 Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. Dirac matrix Vacuum fluctuation Pushkin, A. V. aut Enthalten in General relativity and gravitation Springer US, 1970 37(2005), 10 vom: Okt., Seite 1705-1718 (DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 0001-7701 nnns volume:37 year:2005 number:10 month:10 pages:1705-1718 https://doi.org/10.1007/s10714-005-0153-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2009 GBV_ILN_2409 AR 37 2005 10 10 1705-1718 |
language |
English |
source |
Enthalten in General relativity and gravitation 37(2005), 10 vom: Okt., Seite 1705-1718 volume:37 year:2005 number:10 month:10 pages:1705-1718 |
sourceStr |
Enthalten in General relativity and gravitation 37(2005), 10 vom: Okt., Seite 1705-1718 volume:37 year:2005 number:10 month:10 pages:1705-1718 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dirac matrix Vacuum fluctuation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
General relativity and gravitation |
authorswithroles_txt_mv |
Gorbatenko, M. V. @@aut@@ Pushkin, A. V. @@aut@@ |
publishDateDaySort_date |
2005-10-01T00:00:00Z |
hierarchy_top_id |
129605735 |
dewey-sort |
3530 |
id |
OLC2113775034 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2113775034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063835.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230503s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10714-005-0153-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2113775034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10714-005-0153-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorbatenko, M. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical vacuum properties and internal space dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirac matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum fluctuation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pushkin, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">General relativity and gravitation</subfield><subfield code="d">Springer US, 1970</subfield><subfield code="g">37(2005), 10 vom: Okt., Seite 1705-1718</subfield><subfield code="w">(DE-627)129605735</subfield><subfield code="w">(DE-600)242130-6</subfield><subfield code="w">(DE-576)015100022</subfield><subfield code="x">0001-7701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1705-1718</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10714-005-0153-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2005</subfield><subfield code="e">10</subfield><subfield code="c">10</subfield><subfield code="h">1705-1718</subfield></datafield></record></collection>
|
author |
Gorbatenko, M. V. |
spellingShingle |
Gorbatenko, M. V. ddc 530 ssgn 16,12 misc Dirac matrix misc Vacuum fluctuation Physical vacuum properties and internal space dimension |
authorStr |
Gorbatenko, M. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129605735 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-7701 |
topic_title |
530 VZ 16,12 ssgn Physical vacuum properties and internal space dimension Dirac matrix Vacuum fluctuation |
topic |
ddc 530 ssgn 16,12 misc Dirac matrix misc Vacuum fluctuation |
topic_unstemmed |
ddc 530 ssgn 16,12 misc Dirac matrix misc Vacuum fluctuation |
topic_browse |
ddc 530 ssgn 16,12 misc Dirac matrix misc Vacuum fluctuation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
General relativity and gravitation |
hierarchy_parent_id |
129605735 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
General relativity and gravitation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129605735 (DE-600)242130-6 (DE-576)015100022 |
title |
Physical vacuum properties and internal space dimension |
ctrlnum |
(DE-627)OLC2113775034 (DE-He213)s10714-005-0153-5-p |
title_full |
Physical vacuum properties and internal space dimension |
author_sort |
Gorbatenko, M. V. |
journal |
General relativity and gravitation |
journalStr |
General relativity and gravitation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
1705 |
author_browse |
Gorbatenko, M. V. Pushkin, A. V. |
container_volume |
37 |
class |
530 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Gorbatenko, M. V. |
doi_str_mv |
10.1007/s10714-005-0153-5 |
dewey-full |
530 |
title_sort |
physical vacuum properties and internal space dimension |
title_auth |
Physical vacuum properties and internal space dimension |
abstract |
Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. © Springer-Verlag 2005 |
abstractGer |
Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. © Springer-Verlag 2005 |
abstract_unstemmed |
Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density. © Springer-Verlag 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2009 GBV_ILN_2409 |
container_issue |
10 |
title_short |
Physical vacuum properties and internal space dimension |
url |
https://doi.org/10.1007/s10714-005-0153-5 |
remote_bool |
false |
author2 |
Pushkin, A. V. |
author2Str |
Pushkin, A. V. |
ppnlink |
129605735 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10714-005-0153-5 |
up_date |
2024-07-03T21:57:55.274Z |
_version_ |
1803596726561406976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2113775034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063835.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230503s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10714-005-0153-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2113775034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10714-005-0153-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorbatenko, M. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical vacuum properties and internal space dimension</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper addresses matrix spaces, whose properties and dynamics are determined by Dirac matrices in Riemannian spaces of different dimension and signature. Among all Dirac matrix systems there are such ones, which nontrivial scalar, vector or other tensors cannot be made up from. These Dirac matrix systems are associated with the vacuum state of the matrix space. The simplest vacuum system realization can be ensured using the orthonormal basis in the internal matrix space. This vacuum system realization, however, is not unique. The case of 7-dimensional Riemannian space of signature 7(−) is considered in detail. In this case two basically different vacuum system realizations are possible: (1) with using the orthonormal basis; (2) with using the oblique-angled basis, whose base vectors coincide with the simple roots of the Lie algebra E8. Considerations are presented, from which it follows that the least-dimen-si-on space bearing on physics is the Riemannian 11-dimensional space of signature 1(−)& 10(+). The considerations consist in the condition of maximum vacuum energy density and vacuum fluctuation energy density.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirac matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum fluctuation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pushkin, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">General relativity and gravitation</subfield><subfield code="d">Springer US, 1970</subfield><subfield code="g">37(2005), 10 vom: Okt., Seite 1705-1718</subfield><subfield code="w">(DE-627)129605735</subfield><subfield code="w">(DE-600)242130-6</subfield><subfield code="w">(DE-576)015100022</subfield><subfield code="x">0001-7701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1705-1718</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10714-005-0153-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2005</subfield><subfield code="e">10</subfield><subfield code="c">10</subfield><subfield code="h">1705-1718</subfield></datafield></record></collection>
|
score |
7.399868 |