On the Structure of an Impact Jet with Flow Swirling and Combustion
Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The sw...
Ausführliche Beschreibung
Autor*in: |
Sharaborin, D. K. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Combustion, explosion and shock waves - Pleiades Publishing, 1966, 56(2020), 2 vom: März, Seite 131-136 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2020 ; number:2 ; month:03 ; pages:131-136 |
Links: |
---|
DOI / URN: |
10.1134/S0010508220020021 |
---|
Katalog-ID: |
OLC211854457X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC211854457X | ||
003 | DE-627 | ||
005 | 20230504161115.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0010508220020021 |2 doi | |
035 | |a (DE-627)OLC211854457X | ||
035 | |a (DE-He213)S0010508220020021-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Sharaborin, D. K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Structure of an Impact Jet with Flow Swirling and Combustion |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2020 | ||
520 | |a Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. | ||
650 | 4 | |a swirling jet | |
650 | 4 | |a vortex combustion | |
650 | 4 | |a impact jet | |
650 | 4 | |a near-wall combustion | |
700 | 1 | |a Tolstoguzov, R. V. |4 aut | |
700 | 1 | |a Dulin, V. M. |4 aut | |
700 | 1 | |a Markovich, D. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Combustion, explosion and shock waves |d Pleiades Publishing, 1966 |g 56(2020), 2 vom: März, Seite 131-136 |w (DE-627)12959282X |w (DE-600)240334-1 |w (DE-576)015085570 |x 0010-5082 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2020 |g number:2 |g month:03 |g pages:131-136 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0010508220020021 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
951 | |a AR | ||
952 | |d 56 |j 2020 |e 2 |c 03 |h 131-136 |
author_variant |
d k s dk dks r v t rv rvt v m d vm vmd d m m dm dmm |
---|---|
matchkey_str |
article:00105082:2020----::nhsrcuefnmatewtfosiln |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1134/S0010508220020021 doi (DE-627)OLC211854457X (DE-He213)S0010508220020021-p DE-627 ger DE-627 rakwb eng 660 VZ Sharaborin, D. K. verfasserin aut On the Structure of an Impact Jet with Flow Swirling and Combustion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. swirling jet vortex combustion impact jet near-wall combustion Tolstoguzov, R. V. aut Dulin, V. M. aut Markovich, D. M. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 56(2020), 2 vom: März, Seite 131-136 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:56 year:2020 number:2 month:03 pages:131-136 https://doi.org/10.1134/S0010508220020021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE AR 56 2020 2 03 131-136 |
spelling |
10.1134/S0010508220020021 doi (DE-627)OLC211854457X (DE-He213)S0010508220020021-p DE-627 ger DE-627 rakwb eng 660 VZ Sharaborin, D. K. verfasserin aut On the Structure of an Impact Jet with Flow Swirling and Combustion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. swirling jet vortex combustion impact jet near-wall combustion Tolstoguzov, R. V. aut Dulin, V. M. aut Markovich, D. M. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 56(2020), 2 vom: März, Seite 131-136 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:56 year:2020 number:2 month:03 pages:131-136 https://doi.org/10.1134/S0010508220020021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE AR 56 2020 2 03 131-136 |
allfields_unstemmed |
10.1134/S0010508220020021 doi (DE-627)OLC211854457X (DE-He213)S0010508220020021-p DE-627 ger DE-627 rakwb eng 660 VZ Sharaborin, D. K. verfasserin aut On the Structure of an Impact Jet with Flow Swirling and Combustion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. swirling jet vortex combustion impact jet near-wall combustion Tolstoguzov, R. V. aut Dulin, V. M. aut Markovich, D. M. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 56(2020), 2 vom: März, Seite 131-136 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:56 year:2020 number:2 month:03 pages:131-136 https://doi.org/10.1134/S0010508220020021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE AR 56 2020 2 03 131-136 |
allfieldsGer |
10.1134/S0010508220020021 doi (DE-627)OLC211854457X (DE-He213)S0010508220020021-p DE-627 ger DE-627 rakwb eng 660 VZ Sharaborin, D. K. verfasserin aut On the Structure of an Impact Jet with Flow Swirling and Combustion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. swirling jet vortex combustion impact jet near-wall combustion Tolstoguzov, R. V. aut Dulin, V. M. aut Markovich, D. M. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 56(2020), 2 vom: März, Seite 131-136 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:56 year:2020 number:2 month:03 pages:131-136 https://doi.org/10.1134/S0010508220020021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE AR 56 2020 2 03 131-136 |
allfieldsSound |
10.1134/S0010508220020021 doi (DE-627)OLC211854457X (DE-He213)S0010508220020021-p DE-627 ger DE-627 rakwb eng 660 VZ Sharaborin, D. K. verfasserin aut On the Structure of an Impact Jet with Flow Swirling and Combustion 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. swirling jet vortex combustion impact jet near-wall combustion Tolstoguzov, R. V. aut Dulin, V. M. aut Markovich, D. M. aut Enthalten in Combustion, explosion and shock waves Pleiades Publishing, 1966 56(2020), 2 vom: März, Seite 131-136 (DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 0010-5082 nnns volume:56 year:2020 number:2 month:03 pages:131-136 https://doi.org/10.1134/S0010508220020021 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE AR 56 2020 2 03 131-136 |
language |
English |
source |
Enthalten in Combustion, explosion and shock waves 56(2020), 2 vom: März, Seite 131-136 volume:56 year:2020 number:2 month:03 pages:131-136 |
sourceStr |
Enthalten in Combustion, explosion and shock waves 56(2020), 2 vom: März, Seite 131-136 volume:56 year:2020 number:2 month:03 pages:131-136 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
swirling jet vortex combustion impact jet near-wall combustion |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Combustion, explosion and shock waves |
authorswithroles_txt_mv |
Sharaborin, D. K. @@aut@@ Tolstoguzov, R. V. @@aut@@ Dulin, V. M. @@aut@@ Markovich, D. M. @@aut@@ |
publishDateDaySort_date |
2020-03-01T00:00:00Z |
hierarchy_top_id |
12959282X |
dewey-sort |
3660 |
id |
OLC211854457X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC211854457X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504161115.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0010508220020021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC211854457X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0010508220020021-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharaborin, D. K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Structure of an Impact Jet with Flow Swirling and Combustion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">swirling jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vortex combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">impact jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near-wall combustion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tolstoguzov, R. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dulin, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markovich, D. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Combustion, explosion and shock waves</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">56(2020), 2 vom: März, Seite 131-136</subfield><subfield code="w">(DE-627)12959282X</subfield><subfield code="w">(DE-600)240334-1</subfield><subfield code="w">(DE-576)015085570</subfield><subfield code="x">0010-5082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:131-136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0010508220020021</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">131-136</subfield></datafield></record></collection>
|
author |
Sharaborin, D. K. |
spellingShingle |
Sharaborin, D. K. ddc 660 misc swirling jet misc vortex combustion misc impact jet misc near-wall combustion On the Structure of an Impact Jet with Flow Swirling and Combustion |
authorStr |
Sharaborin, D. K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12959282X |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-5082 |
topic_title |
660 VZ On the Structure of an Impact Jet with Flow Swirling and Combustion swirling jet vortex combustion impact jet near-wall combustion |
topic |
ddc 660 misc swirling jet misc vortex combustion misc impact jet misc near-wall combustion |
topic_unstemmed |
ddc 660 misc swirling jet misc vortex combustion misc impact jet misc near-wall combustion |
topic_browse |
ddc 660 misc swirling jet misc vortex combustion misc impact jet misc near-wall combustion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Combustion, explosion and shock waves |
hierarchy_parent_id |
12959282X |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Combustion, explosion and shock waves |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12959282X (DE-600)240334-1 (DE-576)015085570 |
title |
On the Structure of an Impact Jet with Flow Swirling and Combustion |
ctrlnum |
(DE-627)OLC211854457X (DE-He213)S0010508220020021-p |
title_full |
On the Structure of an Impact Jet with Flow Swirling and Combustion |
author_sort |
Sharaborin, D. K. |
journal |
Combustion, explosion and shock waves |
journalStr |
Combustion, explosion and shock waves |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
131 |
author_browse |
Sharaborin, D. K. Tolstoguzov, R. V. Dulin, V. M. Markovich, D. M. |
container_volume |
56 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Sharaborin, D. K. |
doi_str_mv |
10.1134/S0010508220020021 |
dewey-full |
660 |
title_sort |
on the structure of an impact jet with flow swirling and combustion |
title_auth |
On the Structure of an Impact Jet with Flow Swirling and Combustion |
abstract |
Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. © Pleiades Publishing, Ltd. 2020 |
abstractGer |
Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. © Pleiades Publishing, Ltd. 2020 |
abstract_unstemmed |
Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front. © Pleiades Publishing, Ltd. 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE |
container_issue |
2 |
title_short |
On the Structure of an Impact Jet with Flow Swirling and Combustion |
url |
https://doi.org/10.1134/S0010508220020021 |
remote_bool |
false |
author2 |
Tolstoguzov, R. V. Dulin, V. M. Markovich, D. M. |
author2Str |
Tolstoguzov, R. V. Dulin, V. M. Markovich, D. M. |
ppnlink |
12959282X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0010508220020021 |
up_date |
2024-07-03T20:02:50.020Z |
_version_ |
1803589485876740096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC211854457X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504161115.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0010508220020021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC211854457X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0010508220020021-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharaborin, D. K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Structure of an Impact Jet with Flow Swirling and Combustion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The PIV and PLIF OH techniques were used to experimentally study the structure of a jet impinging on a flat obstacle with swirling and combustion of a propane–air mixture with an equivalence ratio of 0.7 for a nozzle–obstacle distance H/d = 1 and 3 and in the absence of the obstacle. The swirl ratio was 0.41 and 1.0, and the Reynolds number was 5 000. It is concluded that for both values of the swirl ratio, the presence of the impact surface leads to the formation of an extended central cone-shaped recirculation zones. For H/d = 3 and 2, the OH fluorescence intensity near the impact surface and inside the recirculation zone is significantly reduced. This effect may be caused by a decrease in the temperature of combustion products in the recirculation zone, including in the vicinity of the flame front.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">swirling jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vortex combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">impact jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near-wall combustion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tolstoguzov, R. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dulin, V. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markovich, D. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Combustion, explosion and shock waves</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">56(2020), 2 vom: März, Seite 131-136</subfield><subfield code="w">(DE-627)12959282X</subfield><subfield code="w">(DE-600)240334-1</subfield><subfield code="w">(DE-576)015085570</subfield><subfield code="x">0010-5082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:131-136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0010508220020021</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">131-136</subfield></datafield></record></collection>
|
score |
7.401886 |