Robust design method for optimizing the static accuracy of a vertical machining center
Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser inte...
Ausführliche Beschreibung
Autor*in: |
Wu, Haorong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 |
---|---|
Übergeordnetes Werk: |
volume:109 ; year:2020 ; number:7-8 ; day:24 ; month:07 ; pages:2009-2022 |
Links: |
---|
DOI / URN: |
10.1007/s00170-020-05596-0 |
---|
Katalog-ID: |
OLC2118738110 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2118738110 | ||
003 | DE-627 | ||
005 | 20230504162026.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-020-05596-0 |2 doi | |
035 | |a (DE-627)OLC2118738110 | ||
035 | |a (DE-He213)s00170-020-05596-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Wu, Haorong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Robust design method for optimizing the static accuracy of a vertical machining center |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2020 | ||
520 | |a Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. | ||
650 | 4 | |a Static accuracy design | |
650 | 4 | |a Screw theory | |
650 | 4 | |a Reliability theory | |
650 | 4 | |a Response surface methodology | |
650 | 4 | |a Reliability sensitivity | |
700 | 1 | |a Zheng, Hualin |4 aut | |
700 | 1 | |a Li, Xiaoxiao |4 aut | |
700 | 1 | |a Rong, Maolin |4 aut | |
700 | 1 | |a Fan, Jia |4 aut | |
700 | 1 | |a Meng, Xiaoping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:109 |g year:2020 |g number:7-8 |g day:24 |g month:07 |g pages:2009-2022 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-020-05596-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 109 |j 2020 |e 7-8 |b 24 |c 07 |h 2009-2022 |
author_variant |
h w hw h z hz x l xl m r mr j f jf x m xm |
---|---|
matchkey_str |
article:02683768:2020----::outeinehdootmzntettccuayfvr |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00170-020-05596-0 doi (DE-627)OLC2118738110 (DE-He213)s00170-020-05596-0-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Robust design method for optimizing the static accuracy of a vertical machining center 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity Zheng, Hualin aut Li, Xiaoxiao aut Rong, Maolin aut Fan, Jia aut Meng, Xiaoping aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 https://doi.org/10.1007/s00170-020-05596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 109 2020 7-8 24 07 2009-2022 |
spelling |
10.1007/s00170-020-05596-0 doi (DE-627)OLC2118738110 (DE-He213)s00170-020-05596-0-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Robust design method for optimizing the static accuracy of a vertical machining center 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity Zheng, Hualin aut Li, Xiaoxiao aut Rong, Maolin aut Fan, Jia aut Meng, Xiaoping aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 https://doi.org/10.1007/s00170-020-05596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 109 2020 7-8 24 07 2009-2022 |
allfields_unstemmed |
10.1007/s00170-020-05596-0 doi (DE-627)OLC2118738110 (DE-He213)s00170-020-05596-0-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Robust design method for optimizing the static accuracy of a vertical machining center 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity Zheng, Hualin aut Li, Xiaoxiao aut Rong, Maolin aut Fan, Jia aut Meng, Xiaoping aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 https://doi.org/10.1007/s00170-020-05596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 109 2020 7-8 24 07 2009-2022 |
allfieldsGer |
10.1007/s00170-020-05596-0 doi (DE-627)OLC2118738110 (DE-He213)s00170-020-05596-0-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Robust design method for optimizing the static accuracy of a vertical machining center 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity Zheng, Hualin aut Li, Xiaoxiao aut Rong, Maolin aut Fan, Jia aut Meng, Xiaoping aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 https://doi.org/10.1007/s00170-020-05596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 109 2020 7-8 24 07 2009-2022 |
allfieldsSound |
10.1007/s00170-020-05596-0 doi (DE-627)OLC2118738110 (DE-He213)s00170-020-05596-0-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Robust design method for optimizing the static accuracy of a vertical machining center 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity Zheng, Hualin aut Li, Xiaoxiao aut Rong, Maolin aut Fan, Jia aut Meng, Xiaoping aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 https://doi.org/10.1007/s00170-020-05596-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 109 2020 7-8 24 07 2009-2022 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 109(2020), 7-8 vom: 24. Juli, Seite 2009-2022 volume:109 year:2020 number:7-8 day:24 month:07 pages:2009-2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Wu, Haorong @@aut@@ Zheng, Hualin @@aut@@ Li, Xiaoxiao @@aut@@ Rong, Maolin @@aut@@ Fan, Jia @@aut@@ Meng, Xiaoping @@aut@@ |
publishDateDaySort_date |
2020-07-24T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2118738110 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2118738110</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504162026.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-020-05596-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2118738110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-020-05596-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust design method for optimizing the static accuracy of a vertical machining center</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Static accuracy design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screw theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reliability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response surface methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reliability sensitivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Hualin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rong, Maolin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Jia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiaoping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">109(2020), 7-8 vom: 24. Juli, Seite 2009-2022</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:109</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:7-8</subfield><subfield code="g">day:24</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:2009-2022</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-020-05596-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">109</subfield><subfield code="j">2020</subfield><subfield code="e">7-8</subfield><subfield code="b">24</subfield><subfield code="c">07</subfield><subfield code="h">2009-2022</subfield></datafield></record></collection>
|
author |
Wu, Haorong |
spellingShingle |
Wu, Haorong ddc 670 misc Static accuracy design misc Screw theory misc Reliability theory misc Response surface methodology misc Reliability sensitivity Robust design method for optimizing the static accuracy of a vertical machining center |
authorStr |
Wu, Haorong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Robust design method for optimizing the static accuracy of a vertical machining center Static accuracy design Screw theory Reliability theory Response surface methodology Reliability sensitivity |
topic |
ddc 670 misc Static accuracy design misc Screw theory misc Reliability theory misc Response surface methodology misc Reliability sensitivity |
topic_unstemmed |
ddc 670 misc Static accuracy design misc Screw theory misc Reliability theory misc Response surface methodology misc Reliability sensitivity |
topic_browse |
ddc 670 misc Static accuracy design misc Screw theory misc Reliability theory misc Response surface methodology misc Reliability sensitivity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Robust design method for optimizing the static accuracy of a vertical machining center |
ctrlnum |
(DE-627)OLC2118738110 (DE-He213)s00170-020-05596-0-p |
title_full |
Robust design method for optimizing the static accuracy of a vertical machining center |
author_sort |
Wu, Haorong |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
2009 |
author_browse |
Wu, Haorong Zheng, Hualin Li, Xiaoxiao Rong, Maolin Fan, Jia Meng, Xiaoping |
container_volume |
109 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Wu, Haorong |
doi_str_mv |
10.1007/s00170-020-05596-0 |
dewey-full |
670 |
title_sort |
robust design method for optimizing the static accuracy of a vertical machining center |
title_auth |
Robust design method for optimizing the static accuracy of a vertical machining center |
abstract |
Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
abstractGer |
Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
abstract_unstemmed |
Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
7-8 |
title_short |
Robust design method for optimizing the static accuracy of a vertical machining center |
url |
https://doi.org/10.1007/s00170-020-05596-0 |
remote_bool |
false |
author2 |
Zheng, Hualin Li, Xiaoxiao Rong, Maolin Fan, Jia Meng, Xiaoping |
author2Str |
Zheng, Hualin Li, Xiaoxiao Rong, Maolin Fan, Jia Meng, Xiaoping |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-020-05596-0 |
up_date |
2024-07-03T21:11:13.001Z |
_version_ |
1803593788163096576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2118738110</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504162026.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-020-05596-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2118738110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-020-05596-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust design method for optimizing the static accuracy of a vertical machining center</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a robust design method for optimizing the static accuracy of a vertical machining center is proposed. First, the accuracy prediction model was established using screw theory to determine the output accuracy of the machine tool, which was verified by using a DBB and laser interferometer. Then, combining the machine tool’s output accuracy and accuracy design requirements to identify the performance equation of the machining accuracy, a model to calculate machining accuracy reliability is derived. Because the reliability calculation model is highly nonlinear, this paper uses response surface methodology to obtain a highly approximate solution for reliability, and the worst reliable working position can also be found from this. On this basis, according to the sensitivity analysis of machining accuracy reliability, the key distribution parameters of geometric error elements that have an important impact are identified. According to the principle of accuracy balance, the error distribution parameters are reasonably adjusted to reduce the effect of errors on the reliability to create a robust design for optimizing the machine tool static accuracy. The research results show that the method proposed only needs to optimize the error distribution parameters five times to make the machining accuracy reliability meet design requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Static accuracy design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screw theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reliability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response surface methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reliability sensitivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Hualin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rong, Maolin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Jia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiaoping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">109(2020), 7-8 vom: 24. Juli, Seite 2009-2022</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:109</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:7-8</subfield><subfield code="g">day:24</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:2009-2022</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-020-05596-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">109</subfield><subfield code="j">2020</subfield><subfield code="e">7-8</subfield><subfield code="b">24</subfield><subfield code="c">07</subfield><subfield code="h">2009-2022</subfield></datafield></record></collection>
|
score |
7.401019 |