Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory
Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The d...
Ausführliche Beschreibung
Autor*in: |
Majhool, A. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied mechanics and technical physics - Pleiades Publishing, 1966, 61(2020), 1 vom: Jan., Seite 61-69 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2020 ; number:1 ; month:01 ; pages:61-69 |
Links: |
---|
DOI / URN: |
10.1134/S0021894420010071 |
---|
Katalog-ID: |
OLC2118744323 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2118744323 | ||
003 | DE-627 | ||
005 | 20230504162045.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0021894420010071 |2 doi | |
035 | |a (DE-627)OLC2118744323 | ||
035 | |a (DE-He213)S0021894420010071-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Majhool, A. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2020 | ||
520 | |a Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. | ||
650 | 4 | |a spray moments | |
650 | 4 | |a droplet size distribution | |
650 | 4 | |a droplet velocity distribution | |
650 | 4 | |a interfacial drag model | |
650 | 4 | |a drag modeling | |
700 | 1 | |a Hamza, N. H. |4 aut | |
700 | 1 | |a Jasim, N. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied mechanics and technical physics |d Pleiades Publishing, 1966 |g 61(2020), 1 vom: Jan., Seite 61-69 |w (DE-627)129600946 |w (DE-600)241350-4 |w (DE-576)015094545 |x 0021-8944 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2020 |g number:1 |g month:01 |g pages:61-69 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0021894420010071 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_32 | ||
951 | |a AR | ||
952 | |d 61 |j 2020 |e 1 |c 01 |h 61-69 |
author_variant |
a a m aa aam n h h nh nhh n m j nm nmj |
---|---|
matchkey_str |
article:00218944:2020----::paitraergoeigaeoteoelwrpevlc |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1134/S0021894420010071 doi (DE-627)OLC2118744323 (DE-He213)S0021894420010071-p DE-627 ger DE-627 rakwb eng 530 VZ Majhool, A. A. verfasserin aut Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling Hamza, N. H. aut Jasim, N. M. aut Enthalten in Journal of applied mechanics and technical physics Pleiades Publishing, 1966 61(2020), 1 vom: Jan., Seite 61-69 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:61 year:2020 number:1 month:01 pages:61-69 https://doi.org/10.1134/S0021894420010071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_32 AR 61 2020 1 01 61-69 |
spelling |
10.1134/S0021894420010071 doi (DE-627)OLC2118744323 (DE-He213)S0021894420010071-p DE-627 ger DE-627 rakwb eng 530 VZ Majhool, A. A. verfasserin aut Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling Hamza, N. H. aut Jasim, N. M. aut Enthalten in Journal of applied mechanics and technical physics Pleiades Publishing, 1966 61(2020), 1 vom: Jan., Seite 61-69 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:61 year:2020 number:1 month:01 pages:61-69 https://doi.org/10.1134/S0021894420010071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_32 AR 61 2020 1 01 61-69 |
allfields_unstemmed |
10.1134/S0021894420010071 doi (DE-627)OLC2118744323 (DE-He213)S0021894420010071-p DE-627 ger DE-627 rakwb eng 530 VZ Majhool, A. A. verfasserin aut Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling Hamza, N. H. aut Jasim, N. M. aut Enthalten in Journal of applied mechanics and technical physics Pleiades Publishing, 1966 61(2020), 1 vom: Jan., Seite 61-69 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:61 year:2020 number:1 month:01 pages:61-69 https://doi.org/10.1134/S0021894420010071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_32 AR 61 2020 1 01 61-69 |
allfieldsGer |
10.1134/S0021894420010071 doi (DE-627)OLC2118744323 (DE-He213)S0021894420010071-p DE-627 ger DE-627 rakwb eng 530 VZ Majhool, A. A. verfasserin aut Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling Hamza, N. H. aut Jasim, N. M. aut Enthalten in Journal of applied mechanics and technical physics Pleiades Publishing, 1966 61(2020), 1 vom: Jan., Seite 61-69 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:61 year:2020 number:1 month:01 pages:61-69 https://doi.org/10.1134/S0021894420010071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_32 AR 61 2020 1 01 61-69 |
allfieldsSound |
10.1134/S0021894420010071 doi (DE-627)OLC2118744323 (DE-He213)S0021894420010071-p DE-627 ger DE-627 rakwb eng 530 VZ Majhool, A. A. verfasserin aut Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling Hamza, N. H. aut Jasim, N. M. aut Enthalten in Journal of applied mechanics and technical physics Pleiades Publishing, 1966 61(2020), 1 vom: Jan., Seite 61-69 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:61 year:2020 number:1 month:01 pages:61-69 https://doi.org/10.1134/S0021894420010071 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_32 AR 61 2020 1 01 61-69 |
language |
English |
source |
Enthalten in Journal of applied mechanics and technical physics 61(2020), 1 vom: Jan., Seite 61-69 volume:61 year:2020 number:1 month:01 pages:61-69 |
sourceStr |
Enthalten in Journal of applied mechanics and technical physics 61(2020), 1 vom: Jan., Seite 61-69 volume:61 year:2020 number:1 month:01 pages:61-69 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of applied mechanics and technical physics |
authorswithroles_txt_mv |
Majhool, A. A. @@aut@@ Hamza, N. H. @@aut@@ Jasim, N. M. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
129600946 |
dewey-sort |
3530 |
id |
OLC2118744323 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2118744323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504162045.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0021894420010071</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2118744323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0021894420010071-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majhool, A. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spray moments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droplet size distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droplet velocity distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interfacial drag model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drag modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamza, N. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jasim, N. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied mechanics and technical physics</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">61(2020), 1 vom: Jan., Seite 61-69</subfield><subfield code="w">(DE-627)129600946</subfield><subfield code="w">(DE-600)241350-4</subfield><subfield code="w">(DE-576)015094545</subfield><subfield code="x">0021-8944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:61-69</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0021894420010071</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">61-69</subfield></datafield></record></collection>
|
author |
Majhool, A. A. |
spellingShingle |
Majhool, A. A. ddc 530 misc spray moments misc droplet size distribution misc droplet velocity distribution misc interfacial drag model misc drag modeling Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory |
authorStr |
Majhool, A. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129600946 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-8944 |
topic_title |
530 VZ Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory spray moments droplet size distribution droplet velocity distribution interfacial drag model drag modeling |
topic |
ddc 530 misc spray moments misc droplet size distribution misc droplet velocity distribution misc interfacial drag model misc drag modeling |
topic_unstemmed |
ddc 530 misc spray moments misc droplet size distribution misc droplet velocity distribution misc interfacial drag model misc drag modeling |
topic_browse |
ddc 530 misc spray moments misc droplet size distribution misc droplet velocity distribution misc interfacial drag model misc drag modeling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of applied mechanics and technical physics |
hierarchy_parent_id |
129600946 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of applied mechanics and technical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 |
title |
Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory |
ctrlnum |
(DE-627)OLC2118744323 (DE-He213)S0021894420010071-p |
title_full |
Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory |
author_sort |
Majhool, A. A. |
journal |
Journal of applied mechanics and technical physics |
journalStr |
Journal of applied mechanics and technical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
61 |
author_browse |
Majhool, A. A. Hamza, N. H. Jasim, N. M. |
container_volume |
61 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Majhool, A. A. |
doi_str_mv |
10.1134/S0021894420010071 |
dewey-full |
530 |
title_sort |
spray interface drag modeling based on the power-law droplet velocity using the moment theory |
title_auth |
Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory |
abstract |
Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. © Pleiades Publishing, Ltd. 2020 |
abstractGer |
Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. © Pleiades Publishing, Ltd. 2020 |
abstract_unstemmed |
Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius. © Pleiades Publishing, Ltd. 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_32 |
container_issue |
1 |
title_short |
Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory |
url |
https://doi.org/10.1134/S0021894420010071 |
remote_bool |
false |
author2 |
Hamza, N. H. Jasim, N. M. |
author2Str |
Hamza, N. H. Jasim, N. M. |
ppnlink |
129600946 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0021894420010071 |
up_date |
2024-07-03T21:13:37.227Z |
_version_ |
1803593939396067328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2118744323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504162045.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0021894420010071</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2118744323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0021894420010071-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majhool, A. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Interphase momentum exchange of a polydispersed two-phase flow is numerically studied by using a model based on interfacial drag effects of a bulk liquid, ligaments, and droplets entrained in the air flow. A power-law relation is proposed between the droplet velocity and its diameter. The dispersed phase is modeled using the methodology of spray moments of the drop size distribution. All the equations are solved in a Eulerian framework using the finite volume approach, and the phases are coupled with the source terms. The proposed dependence accurately simulates the droplet behavior because droplets with larger diameters experience a higher drag and generally have higher velocities than smaller droplets. The model shows reasonable agreement with experimental and numerical data on the spray tip penetration and Sauter mean radius.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spray moments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droplet size distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">droplet velocity distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interfacial drag model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drag modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamza, N. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jasim, N. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied mechanics and technical physics</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">61(2020), 1 vom: Jan., Seite 61-69</subfield><subfield code="w">(DE-627)129600946</subfield><subfield code="w">(DE-600)241350-4</subfield><subfield code="w">(DE-576)015094545</subfield><subfield code="x">0021-8944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:61-69</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0021894420010071</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">61-69</subfield></datafield></record></collection>
|
score |
7.4017324 |