Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications
Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed...
Ausführliche Beschreibung
Autor*in: |
Zainud-Deen, Saber Helmy [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Wireless personal communications - Springer US, 1994, 114(2020), 1 vom: 15. Apr., Seite 113-122 |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2020 ; number:1 ; day:15 ; month:04 ; pages:113-122 |
Links: |
---|
DOI / URN: |
10.1007/s11277-020-07353-8 |
---|
Katalog-ID: |
OLC2118852924 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2118852924 | ||
003 | DE-627 | ||
005 | 20230504162547.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11277-020-07353-8 |2 doi | |
035 | |a (DE-627)OLC2118852924 | ||
035 | |a (DE-He213)s11277-020-07353-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
100 | 1 | |a Zainud-Deen, Saber Helmy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. | ||
650 | 4 | |a Substrate integrated waveguide (SIW) | |
650 | 4 | |a DRA | |
650 | 4 | |a Ridge-gap structure | |
650 | 4 | |a Circular polarization | |
700 | 1 | |a Malhat, Hend Abd El-Azem |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Wireless personal communications |d Springer US, 1994 |g 114(2020), 1 vom: 15. Apr., Seite 113-122 |w (DE-627)188950273 |w (DE-600)1287489-9 |w (DE-576)049958909 |x 0929-6212 |7 nnns |
773 | 1 | 8 | |g volume:114 |g year:2020 |g number:1 |g day:15 |g month:04 |g pages:113-122 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11277-020-07353-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MKW | ||
951 | |a AR | ||
952 | |d 114 |j 2020 |e 1 |b 15 |c 04 |h 113-122 |
author_variant |
s h z d shz shzd h a e a m haea haeam |
---|---|
matchkey_str |
article:09296212:2020----::iclryoaieswrfdyiggpaeudfr |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11277-020-07353-8 doi (DE-627)OLC2118852924 (DE-He213)s11277-020-07353-8-p DE-627 ger DE-627 rakwb eng 620 VZ Zainud-Deen, Saber Helmy verfasserin aut Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization Malhat, Hend Abd El-Azem aut Enthalten in Wireless personal communications Springer US, 1994 114(2020), 1 vom: 15. Apr., Seite 113-122 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:114 year:2020 number:1 day:15 month:04 pages:113-122 https://doi.org/10.1007/s11277-020-07353-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW AR 114 2020 1 15 04 113-122 |
spelling |
10.1007/s11277-020-07353-8 doi (DE-627)OLC2118852924 (DE-He213)s11277-020-07353-8-p DE-627 ger DE-627 rakwb eng 620 VZ Zainud-Deen, Saber Helmy verfasserin aut Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization Malhat, Hend Abd El-Azem aut Enthalten in Wireless personal communications Springer US, 1994 114(2020), 1 vom: 15. Apr., Seite 113-122 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:114 year:2020 number:1 day:15 month:04 pages:113-122 https://doi.org/10.1007/s11277-020-07353-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW AR 114 2020 1 15 04 113-122 |
allfields_unstemmed |
10.1007/s11277-020-07353-8 doi (DE-627)OLC2118852924 (DE-He213)s11277-020-07353-8-p DE-627 ger DE-627 rakwb eng 620 VZ Zainud-Deen, Saber Helmy verfasserin aut Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization Malhat, Hend Abd El-Azem aut Enthalten in Wireless personal communications Springer US, 1994 114(2020), 1 vom: 15. Apr., Seite 113-122 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:114 year:2020 number:1 day:15 month:04 pages:113-122 https://doi.org/10.1007/s11277-020-07353-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW AR 114 2020 1 15 04 113-122 |
allfieldsGer |
10.1007/s11277-020-07353-8 doi (DE-627)OLC2118852924 (DE-He213)s11277-020-07353-8-p DE-627 ger DE-627 rakwb eng 620 VZ Zainud-Deen, Saber Helmy verfasserin aut Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization Malhat, Hend Abd El-Azem aut Enthalten in Wireless personal communications Springer US, 1994 114(2020), 1 vom: 15. Apr., Seite 113-122 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:114 year:2020 number:1 day:15 month:04 pages:113-122 https://doi.org/10.1007/s11277-020-07353-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW AR 114 2020 1 15 04 113-122 |
allfieldsSound |
10.1007/s11277-020-07353-8 doi (DE-627)OLC2118852924 (DE-He213)s11277-020-07353-8-p DE-627 ger DE-627 rakwb eng 620 VZ Zainud-Deen, Saber Helmy verfasserin aut Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization Malhat, Hend Abd El-Azem aut Enthalten in Wireless personal communications Springer US, 1994 114(2020), 1 vom: 15. Apr., Seite 113-122 (DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 0929-6212 nnns volume:114 year:2020 number:1 day:15 month:04 pages:113-122 https://doi.org/10.1007/s11277-020-07353-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW AR 114 2020 1 15 04 113-122 |
language |
English |
source |
Enthalten in Wireless personal communications 114(2020), 1 vom: 15. Apr., Seite 113-122 volume:114 year:2020 number:1 day:15 month:04 pages:113-122 |
sourceStr |
Enthalten in Wireless personal communications 114(2020), 1 vom: 15. Apr., Seite 113-122 volume:114 year:2020 number:1 day:15 month:04 pages:113-122 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Wireless personal communications |
authorswithroles_txt_mv |
Zainud-Deen, Saber Helmy @@aut@@ Malhat, Hend Abd El-Azem @@aut@@ |
publishDateDaySort_date |
2020-04-15T00:00:00Z |
hierarchy_top_id |
188950273 |
dewey-sort |
3620 |
id |
OLC2118852924 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2118852924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504162547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-020-07353-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2118852924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-020-07353-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zainud-Deen, Saber Helmy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrate integrated waveguide (SIW)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DRA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ridge-gap structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular polarization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malhat, Hend Abd El-Azem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">114(2020), 1 vom: 15. Apr., Seite 113-122</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:113-122</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-020-07353-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">113-122</subfield></datafield></record></collection>
|
author |
Zainud-Deen, Saber Helmy |
spellingShingle |
Zainud-Deen, Saber Helmy ddc 620 misc Substrate integrated waveguide (SIW) misc DRA misc Ridge-gap structure misc Circular polarization Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications |
authorStr |
Zainud-Deen, Saber Helmy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)188950273 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0929-6212 |
topic_title |
620 VZ Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications Substrate integrated waveguide (SIW) DRA Ridge-gap structure Circular polarization |
topic |
ddc 620 misc Substrate integrated waveguide (SIW) misc DRA misc Ridge-gap structure misc Circular polarization |
topic_unstemmed |
ddc 620 misc Substrate integrated waveguide (SIW) misc DRA misc Ridge-gap structure misc Circular polarization |
topic_browse |
ddc 620 misc Substrate integrated waveguide (SIW) misc DRA misc Ridge-gap structure misc Circular polarization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Wireless personal communications |
hierarchy_parent_id |
188950273 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Wireless personal communications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)188950273 (DE-600)1287489-9 (DE-576)049958909 |
title |
Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications |
ctrlnum |
(DE-627)OLC2118852924 (DE-He213)s11277-020-07353-8-p |
title_full |
Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications |
author_sort |
Zainud-Deen, Saber Helmy |
journal |
Wireless personal communications |
journalStr |
Wireless personal communications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
113 |
author_browse |
Zainud-Deen, Saber Helmy Malhat, Hend Abd El-Azem |
container_volume |
114 |
class |
620 VZ |
format_se |
Aufsätze |
author-letter |
Zainud-Deen, Saber Helmy |
doi_str_mv |
10.1007/s11277-020-07353-8 |
dewey-full |
620 |
title_sort |
circularly polarized siw dra fed by ridge gap waveguide for 60 ghz communications |
title_auth |
Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications |
abstract |
Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MKW |
container_issue |
1 |
title_short |
Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications |
url |
https://doi.org/10.1007/s11277-020-07353-8 |
remote_bool |
false |
author2 |
Malhat, Hend Abd El-Azem |
author2Str |
Malhat, Hend Abd El-Azem |
ppnlink |
188950273 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11277-020-07353-8 |
up_date |
2024-07-03T21:51:34.667Z |
_version_ |
1803596327464992768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2118852924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504162547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11277-020-07353-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2118852924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11277-020-07353-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zainud-Deen, Saber Helmy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circularly Polarized SIW DRA Fed by Ridge Gap Waveguide for 60 GHz Communications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A compact planar dielectric resonator antenna (DRA) is designed based on the substrate integrated waveguide (SIW) technology for 60 GHz communications. The proposed antenna is constructed from a multilayered dielectric substrate separated by metallic sheets. A dog-bone shaped DRA is formed by perforating the upper dielectric substrate with air holes surrounding the dog-bone structure. The DRA is surrounded by metallic vies connecting two metal sheets above and below the substrate containing the DRA. The DRA is fed through a slot coupled microstrip transmission line printed below the slot. The ridge-gap waveguide technology (RGW) is used in the feeding layer to suppress the surface wave surrounding the microstrip transmission line and improve the peak gain. The RGW unit-cell structure has stop-band of 46–95 GHz. The SIW DRA introduces impedance bandwidth from 59.4 to 60.4 GHz (1.67% referenced to 60 GHz) with peak gain of 6.78 dBi. The circular polarization (CP) is achieved by the rotation of the dog-bone shaped DRA by 45° with respect to the feeding slot. It produces left-hand CP with a bandwidth of 0.22 GHz (0.36%). A 2 × 1 SIW-DRA elements are designed with sequential rotation and phases for CP bandwidth enhancement. The peak gain increases to 9.1 dBi, and a broadband AR of 4.8 GHz (8%) is achieved. 2 × 2 SIW-DRA elements with 90° orientation rotation angle and phases of 0, 90°, 180°, and 270° are designed. An improvement in the peak gain of 11 dBi is produced with wide AR bandwidth of 10.8 GHz (18% from 54.2 GHz to 65 GHz) for 60 GHz communications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrate integrated waveguide (SIW)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DRA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ridge-gap structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular polarization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malhat, Hend Abd El-Azem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Wireless personal communications</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">114(2020), 1 vom: 15. Apr., Seite 113-122</subfield><subfield code="w">(DE-627)188950273</subfield><subfield code="w">(DE-600)1287489-9</subfield><subfield code="w">(DE-576)049958909</subfield><subfield code="x">0929-6212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:113-122</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11277-020-07353-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">04</subfield><subfield code="h">113-122</subfield></datafield></record></collection>
|
score |
7.401353 |