Regular Boundary Value Problems for the Dirac Operator
Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz ba...
Ausführliche Beschreibung
Autor*in: |
Makin, A. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Doklady mathematics - Pleiades Publishing, 1995, 101(2020), 3 vom: Mai, Seite 214-217 |
---|---|
Übergeordnetes Werk: |
volume:101 ; year:2020 ; number:3 ; month:05 ; pages:214-217 |
Links: |
---|
DOI / URN: |
10.1134/S106456242003014X |
---|
Katalog-ID: |
OLC2119385491 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2119385491 | ||
003 | DE-627 | ||
005 | 20230504170145.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S106456242003014X |2 doi | |
035 | |a (DE-627)OLC2119385491 | ||
035 | |a (DE-He213)S106456242003014X-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Makin, A. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Regular Boundary Value Problems for the Dirac Operator |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2020 | ||
520 | |a Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. | ||
773 | 0 | 8 | |i Enthalten in |t Doklady mathematics |d Pleiades Publishing, 1995 |g 101(2020), 3 vom: Mai, Seite 214-217 |w (DE-627)190923512 |w (DE-600)1294559-6 |w (DE-576)051408724 |x 1064-5624 |7 nnns |
773 | 1 | 8 | |g volume:101 |g year:2020 |g number:3 |g month:05 |g pages:214-217 |
856 | 4 | 1 | |u https://doi.org/10.1134/S106456242003014X |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 101 |j 2020 |e 3 |c 05 |h 214-217 |
author_variant |
a s m as asm |
---|---|
matchkey_str |
article:10645624:2020----::euabudrvlerbesot |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1134/S106456242003014X doi (DE-627)OLC2119385491 (DE-He213)S106456242003014X-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Makin, A. S. verfasserin aut Regular Boundary Value Problems for the Dirac Operator 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. Enthalten in Doklady mathematics Pleiades Publishing, 1995 101(2020), 3 vom: Mai, Seite 214-217 (DE-627)190923512 (DE-600)1294559-6 (DE-576)051408724 1064-5624 nnns volume:101 year:2020 number:3 month:05 pages:214-217 https://doi.org/10.1134/S106456242003014X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 101 2020 3 05 214-217 |
spelling |
10.1134/S106456242003014X doi (DE-627)OLC2119385491 (DE-He213)S106456242003014X-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Makin, A. S. verfasserin aut Regular Boundary Value Problems for the Dirac Operator 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. Enthalten in Doklady mathematics Pleiades Publishing, 1995 101(2020), 3 vom: Mai, Seite 214-217 (DE-627)190923512 (DE-600)1294559-6 (DE-576)051408724 1064-5624 nnns volume:101 year:2020 number:3 month:05 pages:214-217 https://doi.org/10.1134/S106456242003014X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 101 2020 3 05 214-217 |
allfields_unstemmed |
10.1134/S106456242003014X doi (DE-627)OLC2119385491 (DE-He213)S106456242003014X-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Makin, A. S. verfasserin aut Regular Boundary Value Problems for the Dirac Operator 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. Enthalten in Doklady mathematics Pleiades Publishing, 1995 101(2020), 3 vom: Mai, Seite 214-217 (DE-627)190923512 (DE-600)1294559-6 (DE-576)051408724 1064-5624 nnns volume:101 year:2020 number:3 month:05 pages:214-217 https://doi.org/10.1134/S106456242003014X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 101 2020 3 05 214-217 |
allfieldsGer |
10.1134/S106456242003014X doi (DE-627)OLC2119385491 (DE-He213)S106456242003014X-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Makin, A. S. verfasserin aut Regular Boundary Value Problems for the Dirac Operator 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. Enthalten in Doklady mathematics Pleiades Publishing, 1995 101(2020), 3 vom: Mai, Seite 214-217 (DE-627)190923512 (DE-600)1294559-6 (DE-576)051408724 1064-5624 nnns volume:101 year:2020 number:3 month:05 pages:214-217 https://doi.org/10.1134/S106456242003014X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 101 2020 3 05 214-217 |
allfieldsSound |
10.1134/S106456242003014X doi (DE-627)OLC2119385491 (DE-He213)S106456242003014X-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Makin, A. S. verfasserin aut Regular Boundary Value Problems for the Dirac Operator 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2020 Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. Enthalten in Doklady mathematics Pleiades Publishing, 1995 101(2020), 3 vom: Mai, Seite 214-217 (DE-627)190923512 (DE-600)1294559-6 (DE-576)051408724 1064-5624 nnns volume:101 year:2020 number:3 month:05 pages:214-217 https://doi.org/10.1134/S106456242003014X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 101 2020 3 05 214-217 |
language |
English |
source |
Enthalten in Doklady mathematics 101(2020), 3 vom: Mai, Seite 214-217 volume:101 year:2020 number:3 month:05 pages:214-217 |
sourceStr |
Enthalten in Doklady mathematics 101(2020), 3 vom: Mai, Seite 214-217 volume:101 year:2020 number:3 month:05 pages:214-217 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Doklady mathematics |
authorswithroles_txt_mv |
Makin, A. S. @@aut@@ |
publishDateDaySort_date |
2020-05-01T00:00:00Z |
hierarchy_top_id |
190923512 |
dewey-sort |
3510 |
id |
OLC2119385491 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2119385491</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504170145.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S106456242003014X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2119385491</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S106456242003014X-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makin, A. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regular Boundary Value Problems for the Dirac Operator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Doklady mathematics</subfield><subfield code="d">Pleiades Publishing, 1995</subfield><subfield code="g">101(2020), 3 vom: Mai, Seite 214-217</subfield><subfield code="w">(DE-627)190923512</subfield><subfield code="w">(DE-600)1294559-6</subfield><subfield code="w">(DE-576)051408724</subfield><subfield code="x">1064-5624</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:214-217</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S106456242003014X</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">214-217</subfield></datafield></record></collection>
|
author |
Makin, A. S. |
spellingShingle |
Makin, A. S. ddc 510 ssgn 17,1 Regular Boundary Value Problems for the Dirac Operator |
authorStr |
Makin, A. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)190923512 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1064-5624 |
topic_title |
510 VZ 17,1 ssgn Regular Boundary Value Problems for the Dirac Operator |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Doklady mathematics |
hierarchy_parent_id |
190923512 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Doklady mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)190923512 (DE-600)1294559-6 (DE-576)051408724 |
title |
Regular Boundary Value Problems for the Dirac Operator |
ctrlnum |
(DE-627)OLC2119385491 (DE-He213)S106456242003014X-p |
title_full |
Regular Boundary Value Problems for the Dirac Operator |
author_sort |
Makin, A. S. |
journal |
Doklady mathematics |
journalStr |
Doklady mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
214 |
author_browse |
Makin, A. S. |
container_volume |
101 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Makin, A. S. |
doi_str_mv |
10.1134/S106456242003014X |
dewey-full |
510 |
title_sort |
regular boundary value problems for the dirac operator |
title_auth |
Regular Boundary Value Problems for the Dirac Operator |
abstract |
Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. © Pleiades Publishing, Ltd. 2020 |
abstractGer |
Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. © Pleiades Publishing, Ltd. 2020 |
abstract_unstemmed |
Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses. © Pleiades Publishing, Ltd. 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
3 |
title_short |
Regular Boundary Value Problems for the Dirac Operator |
url |
https://doi.org/10.1134/S106456242003014X |
remote_bool |
false |
ppnlink |
190923512 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S106456242003014X |
up_date |
2024-07-04T00:44:10.207Z |
_version_ |
1803607186035703808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2119385491</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504170145.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S106456242003014X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2119385491</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S106456242003014X-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makin, A. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regular Boundary Value Problems for the Dirac Operator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Spectral problems for the Dirac operator specified on a finite interval with regular, but not strongly regular boundary conditions and a complex-valued integrable potential are studied. This work is aimed at finding the conditions under which the root function system forms a common Riesz basis rather than a Riesz basis with parentheses.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Doklady mathematics</subfield><subfield code="d">Pleiades Publishing, 1995</subfield><subfield code="g">101(2020), 3 vom: Mai, Seite 214-217</subfield><subfield code="w">(DE-627)190923512</subfield><subfield code="w">(DE-600)1294559-6</subfield><subfield code="w">(DE-576)051408724</subfield><subfield code="x">1064-5624</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:214-217</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S106456242003014X</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">214-217</subfield></datafield></record></collection>
|
score |
7.401906 |