Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices
Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’...
Ausführliche Beschreibung
Autor*in: |
Lamboni, Matieyendou [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
First-order index and total indices |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Statistical papers - Springer Berlin Heidelberg, 1988, 61(2018), 5 vom: 24. Mai, Seite 1939-1970 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2018 ; number:5 ; day:24 ; month:05 ; pages:1939-1970 |
Links: |
---|
DOI / URN: |
10.1007/s00362-018-1010-4 |
---|
Katalog-ID: |
OLC211954977X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC211954977X | ||
003 | DE-627 | ||
005 | 20230504170937.0 | ||
007 | tu | ||
008 | 230504s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00362-018-1010-4 |2 doi | |
035 | |a (DE-627)OLC211954977X | ||
035 | |a (DE-He213)s00362-018-1010-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |a 330 |a 510 |q VZ |
100 | 1 | |a Lamboni, Matieyendou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. | ||
650 | 4 | |a First-order index and total indices | |
650 | 4 | |a MVU estimators | |
650 | 4 | |a Sensitivity and uncertainty analysis | |
650 | 4 | |a U-statistics | |
773 | 0 | 8 | |i Enthalten in |t Statistical papers |d Springer Berlin Heidelberg, 1988 |g 61(2018), 5 vom: 24. Mai, Seite 1939-1970 |w (DE-627)129572292 |w (DE-600)227641-0 |w (DE-576)015069486 |x 0932-5026 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2018 |g number:5 |g day:24 |g month:05 |g pages:1939-1970 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00362-018-1010-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4326 | ||
951 | |a AR | ||
952 | |d 61 |j 2018 |e 5 |b 24 |c 05 |h 1939-1970 |
author_variant |
m l ml |
---|---|
matchkey_str |
article:09325026:2018----::netitqatfctoaiiuvracubaejitsiaoote |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00362-018-1010-4 doi (DE-627)OLC211954977X (DE-He213)s00362-018-1010-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Lamboni, Matieyendou verfasserin aut Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 61(2018), 5 vom: 24. Mai, Seite 1939-1970 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 https://doi.org/10.1007/s00362-018-1010-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 61 2018 5 24 05 1939-1970 |
spelling |
10.1007/s00362-018-1010-4 doi (DE-627)OLC211954977X (DE-He213)s00362-018-1010-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Lamboni, Matieyendou verfasserin aut Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 61(2018), 5 vom: 24. Mai, Seite 1939-1970 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 https://doi.org/10.1007/s00362-018-1010-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 61 2018 5 24 05 1939-1970 |
allfields_unstemmed |
10.1007/s00362-018-1010-4 doi (DE-627)OLC211954977X (DE-He213)s00362-018-1010-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Lamboni, Matieyendou verfasserin aut Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 61(2018), 5 vom: 24. Mai, Seite 1939-1970 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 https://doi.org/10.1007/s00362-018-1010-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 61 2018 5 24 05 1939-1970 |
allfieldsGer |
10.1007/s00362-018-1010-4 doi (DE-627)OLC211954977X (DE-He213)s00362-018-1010-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Lamboni, Matieyendou verfasserin aut Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 61(2018), 5 vom: 24. Mai, Seite 1939-1970 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 https://doi.org/10.1007/s00362-018-1010-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 61 2018 5 24 05 1939-1970 |
allfieldsSound |
10.1007/s00362-018-1010-4 doi (DE-627)OLC211954977X (DE-He213)s00362-018-1010-4-p DE-627 ger DE-627 rakwb eng 300 330 510 VZ Lamboni, Matieyendou verfasserin aut Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics Enthalten in Statistical papers Springer Berlin Heidelberg, 1988 61(2018), 5 vom: 24. Mai, Seite 1939-1970 (DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 0932-5026 nnns volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 https://doi.org/10.1007/s00362-018-1010-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 AR 61 2018 5 24 05 1939-1970 |
language |
English |
source |
Enthalten in Statistical papers 61(2018), 5 vom: 24. Mai, Seite 1939-1970 volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 |
sourceStr |
Enthalten in Statistical papers 61(2018), 5 vom: 24. Mai, Seite 1939-1970 volume:61 year:2018 number:5 day:24 month:05 pages:1939-1970 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Statistical papers |
authorswithroles_txt_mv |
Lamboni, Matieyendou @@aut@@ |
publishDateDaySort_date |
2018-05-24T00:00:00Z |
hierarchy_top_id |
129572292 |
dewey-sort |
3300 |
id |
OLC211954977X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC211954977X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504170937.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00362-018-1010-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC211954977X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00362-018-1010-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lamboni, Matieyendou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First-order index and total indices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MVU estimators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity and uncertainty analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">U-statistics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical papers</subfield><subfield code="d">Springer Berlin Heidelberg, 1988</subfield><subfield code="g">61(2018), 5 vom: 24. Mai, Seite 1939-1970</subfield><subfield code="w">(DE-627)129572292</subfield><subfield code="w">(DE-600)227641-0</subfield><subfield code="w">(DE-576)015069486</subfield><subfield code="x">0932-5026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:24</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1939-1970</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00362-018-1010-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">24</subfield><subfield code="c">05</subfield><subfield code="h">1939-1970</subfield></datafield></record></collection>
|
author |
Lamboni, Matieyendou |
spellingShingle |
Lamboni, Matieyendou ddc 300 misc First-order index and total indices misc MVU estimators misc Sensitivity and uncertainty analysis misc U-statistics Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices |
authorStr |
Lamboni, Matieyendou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129572292 |
format |
Article |
dewey-ones |
300 - Social sciences 330 - Economics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0932-5026 |
topic_title |
300 330 510 VZ Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices First-order index and total indices MVU estimators Sensitivity and uncertainty analysis U-statistics |
topic |
ddc 300 misc First-order index and total indices misc MVU estimators misc Sensitivity and uncertainty analysis misc U-statistics |
topic_unstemmed |
ddc 300 misc First-order index and total indices misc MVU estimators misc Sensitivity and uncertainty analysis misc U-statistics |
topic_browse |
ddc 300 misc First-order index and total indices misc MVU estimators misc Sensitivity and uncertainty analysis misc U-statistics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Statistical papers |
hierarchy_parent_id |
129572292 |
dewey-tens |
300 - Social sciences, sociology & anthropology 330 - Economics 510 - Mathematics |
hierarchy_top_title |
Statistical papers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129572292 (DE-600)227641-0 (DE-576)015069486 |
title |
Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices |
ctrlnum |
(DE-627)OLC211954977X (DE-He213)s00362-018-1010-4-p |
title_full |
Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices |
author_sort |
Lamboni, Matieyendou |
journal |
Statistical papers |
journalStr |
Statistical papers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1939 |
author_browse |
Lamboni, Matieyendou |
container_volume |
61 |
class |
300 330 510 VZ |
format_se |
Aufsätze |
author-letter |
Lamboni, Matieyendou |
doi_str_mv |
10.1007/s00362-018-1010-4 |
dewey-full |
300 330 510 |
title_sort |
uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized sobol’ indices |
title_auth |
Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices |
abstract |
Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_26 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2018 GBV_ILN_4277 GBV_ILN_4319 GBV_ILN_4326 |
container_issue |
5 |
title_short |
Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices |
url |
https://doi.org/10.1007/s00362-018-1010-4 |
remote_bool |
false |
ppnlink |
129572292 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00362-018-1010-4 |
up_date |
2024-07-04T01:26:38.034Z |
_version_ |
1803609857625948160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC211954977X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504170937.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00362-018-1010-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC211954977X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00362-018-1010-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lamboni, Matieyendou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Often, uncertainty quantification is followed by the computation of sensitivity indices of input factors. Variance-based sensitivity analysis and multivariate sensitivity analysis (MSA) aim to apportion the variability of the model output(s) into input factors and their interactions. Sobol’ indices (first-order and total indices), which quantify the effects of input factor(s), serve as a practical tool to assess interactions among input factors, the order of interactions, and the magnitude of interactions. In this paper, we investigate a novel way of estimating both the first-order and total indices based on U-statistics, including the statistical properties of the new estimator. First, we provide a minimum variance unbiased estimator of the non-normalized Sobol’ indices as well as its optimal rate of convergence and its asymptotic distribution. Second, we derive a joint estimator of Sobol’ indices, its consistency and its asymptotic distribution, and third, we demonstrate the applicability of these results by means of numerical tests. The new estimator allows for improving the estimation of Sobol’ indices for some degrees of the kernel.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First-order index and total indices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MVU estimators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity and uncertainty analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">U-statistics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical papers</subfield><subfield code="d">Springer Berlin Heidelberg, 1988</subfield><subfield code="g">61(2018), 5 vom: 24. Mai, Seite 1939-1970</subfield><subfield code="w">(DE-627)129572292</subfield><subfield code="w">(DE-600)227641-0</subfield><subfield code="w">(DE-576)015069486</subfield><subfield code="x">0932-5026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:24</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1939-1970</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00362-018-1010-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">24</subfield><subfield code="c">05</subfield><subfield code="h">1939-1970</subfield></datafield></record></collection>
|
score |
7.402231 |