The sintering behavior of ultrafine alumina particles
Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 n...
Ausführliche Beschreibung
Autor*in: |
Bonevich, John E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1992 |
---|
Systematik: |
|
---|
Anmerkung: |
© The Materials Research Society 1992 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials research - Springer International Publishing, 1986, 7(1992), 6 vom: Juni, Seite 1489-1500 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:1992 ; number:6 ; month:06 ; pages:1489-1500 |
Links: |
---|
DOI / URN: |
10.1557/JMR.1992.1489 |
---|
Katalog-ID: |
OLC2119895139 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2119895139 | ||
003 | DE-627 | ||
005 | 20230504173151.0 | ||
007 | tu | ||
008 | 230504s1992 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1557/JMR.1992.1489 |2 doi | |
035 | |a (DE-627)OLC2119895139 | ||
035 | |a (DE-He213)JMR.1992.1489-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a VA 5350 |q VZ |2 rvk | ||
100 | 1 | |a Bonevich, John E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The sintering behavior of ultrafine alumina particles |
264 | 1 | |c 1992 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Materials Research Society 1992 | ||
520 | |a Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. | ||
700 | 1 | |a Marks, Laurence D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials research |d Springer International Publishing, 1986 |g 7(1992), 6 vom: Juni, Seite 1489-1500 |w (DE-627)129206288 |w (DE-600)54876-5 |w (DE-576)01445744X |x 0884-2914 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:1992 |g number:6 |g month:06 |g pages:1489-1500 |
856 | 4 | 1 | |u https://doi.org/10.1557/JMR.1992.1489 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4155 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a VA 5350 |
951 | |a AR | ||
952 | |d 7 |j 1992 |e 6 |c 06 |h 1489-1500 |
author_variant |
j e b je jeb l d m ld ldm |
---|---|
matchkey_str |
article:08842914:1992----::hsneigeairflrfna |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1557/JMR.1992.1489 doi (DE-627)OLC2119895139 (DE-He213)JMR.1992.1489-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Bonevich, John E. verfasserin aut The sintering behavior of ultrafine alumina particles 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1992 Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. Marks, Laurence D. aut Enthalten in Journal of materials research Springer International Publishing, 1986 7(1992), 6 vom: Juni, Seite 1489-1500 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:7 year:1992 number:6 month:06 pages:1489-1500 https://doi.org/10.1557/JMR.1992.1489 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 7 1992 6 06 1489-1500 |
spelling |
10.1557/JMR.1992.1489 doi (DE-627)OLC2119895139 (DE-He213)JMR.1992.1489-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Bonevich, John E. verfasserin aut The sintering behavior of ultrafine alumina particles 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1992 Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. Marks, Laurence D. aut Enthalten in Journal of materials research Springer International Publishing, 1986 7(1992), 6 vom: Juni, Seite 1489-1500 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:7 year:1992 number:6 month:06 pages:1489-1500 https://doi.org/10.1557/JMR.1992.1489 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 7 1992 6 06 1489-1500 |
allfields_unstemmed |
10.1557/JMR.1992.1489 doi (DE-627)OLC2119895139 (DE-He213)JMR.1992.1489-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Bonevich, John E. verfasserin aut The sintering behavior of ultrafine alumina particles 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1992 Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. Marks, Laurence D. aut Enthalten in Journal of materials research Springer International Publishing, 1986 7(1992), 6 vom: Juni, Seite 1489-1500 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:7 year:1992 number:6 month:06 pages:1489-1500 https://doi.org/10.1557/JMR.1992.1489 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 7 1992 6 06 1489-1500 |
allfieldsGer |
10.1557/JMR.1992.1489 doi (DE-627)OLC2119895139 (DE-He213)JMR.1992.1489-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Bonevich, John E. verfasserin aut The sintering behavior of ultrafine alumina particles 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1992 Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. Marks, Laurence D. aut Enthalten in Journal of materials research Springer International Publishing, 1986 7(1992), 6 vom: Juni, Seite 1489-1500 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:7 year:1992 number:6 month:06 pages:1489-1500 https://doi.org/10.1557/JMR.1992.1489 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 7 1992 6 06 1489-1500 |
allfieldsSound |
10.1557/JMR.1992.1489 doi (DE-627)OLC2119895139 (DE-He213)JMR.1992.1489-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Bonevich, John E. verfasserin aut The sintering behavior of ultrafine alumina particles 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1992 Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. Marks, Laurence D. aut Enthalten in Journal of materials research Springer International Publishing, 1986 7(1992), 6 vom: Juni, Seite 1489-1500 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:7 year:1992 number:6 month:06 pages:1489-1500 https://doi.org/10.1557/JMR.1992.1489 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 7 1992 6 06 1489-1500 |
language |
English |
source |
Enthalten in Journal of materials research 7(1992), 6 vom: Juni, Seite 1489-1500 volume:7 year:1992 number:6 month:06 pages:1489-1500 |
sourceStr |
Enthalten in Journal of materials research 7(1992), 6 vom: Juni, Seite 1489-1500 volume:7 year:1992 number:6 month:06 pages:1489-1500 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials research |
authorswithroles_txt_mv |
Bonevich, John E. @@aut@@ Marks, Laurence D. @@aut@@ |
publishDateDaySort_date |
1992-06-01T00:00:00Z |
hierarchy_top_id |
129206288 |
dewey-sort |
3670 |
id |
OLC2119895139 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2119895139</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504173151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/JMR.1992.1489</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2119895139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)JMR.1992.1489-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonevich, John E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The sintering behavior of ultrafine alumina particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marks, Laurence D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">7(1992), 6 vom: Juni, Seite 1489-1500</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1489-1500</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/JMR.1992.1489</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">1992</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1489-1500</subfield></datafield></record></collection>
|
author |
Bonevich, John E. |
spellingShingle |
Bonevich, John E. ddc 670 rvk VA 5350 The sintering behavior of ultrafine alumina particles |
authorStr |
Bonevich, John E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206288 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0884-2914 |
topic_title |
670 VZ VA 5350 VZ rvk The sintering behavior of ultrafine alumina particles |
topic |
ddc 670 rvk VA 5350 |
topic_unstemmed |
ddc 670 rvk VA 5350 |
topic_browse |
ddc 670 rvk VA 5350 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials research |
hierarchy_parent_id |
129206288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X |
title |
The sintering behavior of ultrafine alumina particles |
ctrlnum |
(DE-627)OLC2119895139 (DE-He213)JMR.1992.1489-p |
title_full |
The sintering behavior of ultrafine alumina particles |
author_sort |
Bonevich, John E. |
journal |
Journal of materials research |
journalStr |
Journal of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
txt |
container_start_page |
1489 |
author_browse |
Bonevich, John E. Marks, Laurence D. |
container_volume |
7 |
class |
670 VZ VA 5350 VZ rvk |
format_se |
Aufsätze |
author-letter |
Bonevich, John E. |
doi_str_mv |
10.1557/JMR.1992.1489 |
dewey-full |
670 |
title_sort |
the sintering behavior of ultrafine alumina particles |
title_auth |
The sintering behavior of ultrafine alumina particles |
abstract |
Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. © The Materials Research Society 1992 |
abstractGer |
Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. © The Materials Research Society 1992 |
abstract_unstemmed |
Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region. © The Materials Research Society 1992 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
6 |
title_short |
The sintering behavior of ultrafine alumina particles |
url |
https://doi.org/10.1557/JMR.1992.1489 |
remote_bool |
false |
author2 |
Marks, Laurence D. |
author2Str |
Marks, Laurence D. |
ppnlink |
129206288 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/JMR.1992.1489 |
up_date |
2024-07-04T02:37:03.234Z |
_version_ |
1803614288069263360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2119895139</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504173151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/JMR.1992.1489</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2119895139</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)JMR.1992.1489-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonevich, John E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The sintering behavior of ultrafine alumina particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ultrafine particles (UFPs) of aluminum oxide were prepared by an arc discharge, sintered in a custom-built ultrahigh vacuum (UHV) furnace system, and characterized in a high resolution electron microscope (HREM) operating under UHV conditions. The UFPs produced range in size from 20 to 50 nm and have highly faceted surfaces. The atomic structure of the UFPs corresponds to the cubic (γ) and orthorhombic (δ) variants of the spinel structure. Sintering in these UFPs demonstrates three major issues. Surface faceting plays a major role in determining the final sintering geometry with sintering occurring predominantly on the close-packed {111} facets. Surface diffusion is the predominant mechanism for sintering, as evidenced by the fact that many sintered particles have their initial adhesion structure ‘locked-in’ during sintering with no reorientation occurring. Furthermore, the necks formed during sintering have well-defined, atomically sharp contact angles which suggests that the neck growth process is controlled by the faceted structures and may be modeled by a mechanism similar to crystal growth due to ledges, grain boundaries, and twins. The driving force for sintering can be considered as a chemical potential difference between facet surfaces and the neck region.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marks, Laurence D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">7(1992), 6 vom: Juni, Seite 1489-1500</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1489-1500</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/JMR.1992.1489</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">1992</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1489-1500</subfield></datafield></record></collection>
|
score |
7.40131 |