Crack propagation thresholds: A measure of surface energy
Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of t...
Ausführliche Beschreibung
Autor*in: |
Cook, Robert F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1986 |
---|
Systematik: |
|
---|
Anmerkung: |
© The Materials Research Society 1986 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials research - Springer International Publishing, 1986, 1(1986), 6 vom: Nov., Seite 852-860 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:1986 ; number:6 ; month:11 ; pages:852-860 |
Links: |
---|
DOI / URN: |
10.1557/JMR.1986.0852 |
---|
Katalog-ID: |
OLC2119948542 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2119948542 | ||
003 | DE-627 | ||
005 | 20230504173342.0 | ||
007 | tu | ||
008 | 230504s1986 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1557/JMR.1986.0852 |2 doi | |
035 | |a (DE-627)OLC2119948542 | ||
035 | |a (DE-He213)JMR.1986.0852-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a VA 5350 |q VZ |2 rvk | ||
100 | 1 | |a Cook, Robert F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Crack propagation thresholds: A measure of surface energy |
264 | 1 | |c 1986 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Materials Research Society 1986 | ||
520 | |a Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. | ||
773 | 0 | 8 | |i Enthalten in |t Journal of materials research |d Springer International Publishing, 1986 |g 1(1986), 6 vom: Nov., Seite 852-860 |w (DE-627)129206288 |w (DE-600)54876-5 |w (DE-576)01445744X |x 0884-2914 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:1986 |g number:6 |g month:11 |g pages:852-860 |
856 | 4 | 1 | |u https://doi.org/10.1557/JMR.1986.0852 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4155 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a VA 5350 |
951 | |a AR | ||
952 | |d 1 |j 1986 |e 6 |c 11 |h 852-860 |
author_variant |
r f c rf rfc |
---|---|
matchkey_str |
article:08842914:1986----::rcpoaainhehlsmauef |
hierarchy_sort_str |
1986 |
publishDate |
1986 |
allfields |
10.1557/JMR.1986.0852 doi (DE-627)OLC2119948542 (DE-He213)JMR.1986.0852-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cook, Robert F. verfasserin aut Crack propagation thresholds: A measure of surface energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1986 Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. Enthalten in Journal of materials research Springer International Publishing, 1986 1(1986), 6 vom: Nov., Seite 852-860 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:1 year:1986 number:6 month:11 pages:852-860 https://doi.org/10.1557/JMR.1986.0852 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 1 1986 6 11 852-860 |
spelling |
10.1557/JMR.1986.0852 doi (DE-627)OLC2119948542 (DE-He213)JMR.1986.0852-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cook, Robert F. verfasserin aut Crack propagation thresholds: A measure of surface energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1986 Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. Enthalten in Journal of materials research Springer International Publishing, 1986 1(1986), 6 vom: Nov., Seite 852-860 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:1 year:1986 number:6 month:11 pages:852-860 https://doi.org/10.1557/JMR.1986.0852 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 1 1986 6 11 852-860 |
allfields_unstemmed |
10.1557/JMR.1986.0852 doi (DE-627)OLC2119948542 (DE-He213)JMR.1986.0852-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cook, Robert F. verfasserin aut Crack propagation thresholds: A measure of surface energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1986 Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. Enthalten in Journal of materials research Springer International Publishing, 1986 1(1986), 6 vom: Nov., Seite 852-860 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:1 year:1986 number:6 month:11 pages:852-860 https://doi.org/10.1557/JMR.1986.0852 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 1 1986 6 11 852-860 |
allfieldsGer |
10.1557/JMR.1986.0852 doi (DE-627)OLC2119948542 (DE-He213)JMR.1986.0852-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cook, Robert F. verfasserin aut Crack propagation thresholds: A measure of surface energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1986 Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. Enthalten in Journal of materials research Springer International Publishing, 1986 1(1986), 6 vom: Nov., Seite 852-860 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:1 year:1986 number:6 month:11 pages:852-860 https://doi.org/10.1557/JMR.1986.0852 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 1 1986 6 11 852-860 |
allfieldsSound |
10.1557/JMR.1986.0852 doi (DE-627)OLC2119948542 (DE-He213)JMR.1986.0852-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cook, Robert F. verfasserin aut Crack propagation thresholds: A measure of surface energy 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 1986 Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. Enthalten in Journal of materials research Springer International Publishing, 1986 1(1986), 6 vom: Nov., Seite 852-860 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:1 year:1986 number:6 month:11 pages:852-860 https://doi.org/10.1557/JMR.1986.0852 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 1 1986 6 11 852-860 |
language |
English |
source |
Enthalten in Journal of materials research 1(1986), 6 vom: Nov., Seite 852-860 volume:1 year:1986 number:6 month:11 pages:852-860 |
sourceStr |
Enthalten in Journal of materials research 1(1986), 6 vom: Nov., Seite 852-860 volume:1 year:1986 number:6 month:11 pages:852-860 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials research |
authorswithroles_txt_mv |
Cook, Robert F. @@aut@@ |
publishDateDaySort_date |
1986-11-01T00:00:00Z |
hierarchy_top_id |
129206288 |
dewey-sort |
3670 |
id |
OLC2119948542 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2119948542</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504173342.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s1986 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/JMR.1986.0852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2119948542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)JMR.1986.0852-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cook, Robert F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Crack propagation thresholds: A measure of surface energy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1986</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 1986</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">1(1986), 6 vom: Nov., Seite 852-860</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1986</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:852-860</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/JMR.1986.0852</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1986</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">852-860</subfield></datafield></record></collection>
|
author |
Cook, Robert F. |
spellingShingle |
Cook, Robert F. ddc 670 rvk VA 5350 Crack propagation thresholds: A measure of surface energy |
authorStr |
Cook, Robert F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206288 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0884-2914 |
topic_title |
670 VZ VA 5350 VZ rvk Crack propagation thresholds: A measure of surface energy |
topic |
ddc 670 rvk VA 5350 |
topic_unstemmed |
ddc 670 rvk VA 5350 |
topic_browse |
ddc 670 rvk VA 5350 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials research |
hierarchy_parent_id |
129206288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X |
title |
Crack propagation thresholds: A measure of surface energy |
ctrlnum |
(DE-627)OLC2119948542 (DE-He213)JMR.1986.0852-p |
title_full |
Crack propagation thresholds: A measure of surface energy |
author_sort |
Cook, Robert F. |
journal |
Journal of materials research |
journalStr |
Journal of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1986 |
contenttype_str_mv |
txt |
container_start_page |
852 |
author_browse |
Cook, Robert F. |
container_volume |
1 |
class |
670 VZ VA 5350 VZ rvk |
format_se |
Aufsätze |
author-letter |
Cook, Robert F. |
doi_str_mv |
10.1557/JMR.1986.0852 |
dewey-full |
670 |
title_sort |
crack propagation thresholds: a measure of surface energy |
title_auth |
Crack propagation thresholds: A measure of surface energy |
abstract |
Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. © The Materials Research Society 1986 |
abstractGer |
Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. © The Materials Research Society 1986 |
abstract_unstemmed |
Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone. © The Materials Research Society 1986 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2027 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
6 |
title_short |
Crack propagation thresholds: A measure of surface energy |
url |
https://doi.org/10.1557/JMR.1986.0852 |
remote_bool |
false |
ppnlink |
129206288 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/JMR.1986.0852 |
up_date |
2024-07-04T02:46:45.177Z |
_version_ |
1803614898287017984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2119948542</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504173342.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s1986 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/JMR.1986.0852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2119948542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)JMR.1986.0852-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cook, Robert F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Crack propagation thresholds: A measure of surface energy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1986</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 1986</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J $ m^{−2} $, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">1(1986), 6 vom: Nov., Seite 852-860</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:1986</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:852-860</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/JMR.1986.0852</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">1986</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">852-860</subfield></datafield></record></collection>
|
score |
7.400981 |