Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite
Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by a...
Ausführliche Beschreibung
Autor*in: |
Sivaprakash, P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in electronics - Springer US, 1990, 31(2020), 19 vom: 12. Aug., Seite 16369-16378 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2020 ; number:19 ; day:12 ; month:08 ; pages:16369-16378 |
Links: |
---|
DOI / URN: |
10.1007/s10854-020-04187-9 |
---|
Katalog-ID: |
OLC2120604150 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2120604150 | ||
003 | DE-627 | ||
005 | 20230504180804.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10854-020-04187-9 |2 doi | |
035 | |a (DE-627)OLC2120604150 | ||
035 | |a (DE-He213)s10854-020-04187-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 620 |q VZ |
100 | 1 | |a Sivaprakash, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. | ||
700 | 1 | |a Divya, S. |4 aut | |
700 | 1 | |a Parameshwari, R. |4 aut | |
700 | 1 | |a Saravanan, C. |4 aut | |
700 | 1 | |a Sagadevan, Suresh |4 aut | |
700 | 1 | |a Arumugam, S. |4 aut | |
700 | 1 | |a Esakki Muthu, S. |0 (orcid)0000-0001-8765-9737 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in electronics |d Springer US, 1990 |g 31(2020), 19 vom: 12. Aug., Seite 16369-16378 |w (DE-627)130863289 |w (DE-600)1030929-9 |w (DE-576)023106719 |x 0957-4522 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2020 |g number:19 |g day:12 |g month:08 |g pages:16369-16378 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10854-020-04187-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2015 | ||
951 | |a AR | ||
952 | |d 31 |j 2020 |e 19 |b 12 |c 08 |h 16369-16378 |
author_variant |
p s ps s d sd r p rp c s cs s s ss s a sa m s e ms mse |
---|---|
matchkey_str |
article:09574522:2020----::nlecoz2oigoadtetutrlantcndeetipoe |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10854-020-04187-9 doi (DE-627)OLC2120604150 (DE-He213)s10854-020-04187-9-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Sivaprakash, P. verfasserin aut Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. Divya, S. aut Parameshwari, R. aut Saravanan, C. aut Sagadevan, Suresh aut Arumugam, S. aut Esakki Muthu, S. (orcid)0000-0001-8765-9737 aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 31(2020), 19 vom: 12. Aug., Seite 16369-16378 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 https://doi.org/10.1007/s10854-020-04187-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2004 GBV_ILN_2015 AR 31 2020 19 12 08 16369-16378 |
spelling |
10.1007/s10854-020-04187-9 doi (DE-627)OLC2120604150 (DE-He213)s10854-020-04187-9-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Sivaprakash, P. verfasserin aut Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. Divya, S. aut Parameshwari, R. aut Saravanan, C. aut Sagadevan, Suresh aut Arumugam, S. aut Esakki Muthu, S. (orcid)0000-0001-8765-9737 aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 31(2020), 19 vom: 12. Aug., Seite 16369-16378 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 https://doi.org/10.1007/s10854-020-04187-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2004 GBV_ILN_2015 AR 31 2020 19 12 08 16369-16378 |
allfields_unstemmed |
10.1007/s10854-020-04187-9 doi (DE-627)OLC2120604150 (DE-He213)s10854-020-04187-9-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Sivaprakash, P. verfasserin aut Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. Divya, S. aut Parameshwari, R. aut Saravanan, C. aut Sagadevan, Suresh aut Arumugam, S. aut Esakki Muthu, S. (orcid)0000-0001-8765-9737 aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 31(2020), 19 vom: 12. Aug., Seite 16369-16378 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 https://doi.org/10.1007/s10854-020-04187-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2004 GBV_ILN_2015 AR 31 2020 19 12 08 16369-16378 |
allfieldsGer |
10.1007/s10854-020-04187-9 doi (DE-627)OLC2120604150 (DE-He213)s10854-020-04187-9-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Sivaprakash, P. verfasserin aut Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. Divya, S. aut Parameshwari, R. aut Saravanan, C. aut Sagadevan, Suresh aut Arumugam, S. aut Esakki Muthu, S. (orcid)0000-0001-8765-9737 aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 31(2020), 19 vom: 12. Aug., Seite 16369-16378 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 https://doi.org/10.1007/s10854-020-04187-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2004 GBV_ILN_2015 AR 31 2020 19 12 08 16369-16378 |
allfieldsSound |
10.1007/s10854-020-04187-9 doi (DE-627)OLC2120604150 (DE-He213)s10854-020-04187-9-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Sivaprakash, P. verfasserin aut Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. Divya, S. aut Parameshwari, R. aut Saravanan, C. aut Sagadevan, Suresh aut Arumugam, S. aut Esakki Muthu, S. (orcid)0000-0001-8765-9737 aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 31(2020), 19 vom: 12. Aug., Seite 16369-16378 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 https://doi.org/10.1007/s10854-020-04187-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2004 GBV_ILN_2015 AR 31 2020 19 12 08 16369-16378 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in electronics 31(2020), 19 vom: 12. Aug., Seite 16369-16378 volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 |
sourceStr |
Enthalten in Journal of materials science / Materials in electronics 31(2020), 19 vom: 12. Aug., Seite 16369-16378 volume:31 year:2020 number:19 day:12 month:08 pages:16369-16378 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in electronics |
authorswithroles_txt_mv |
Sivaprakash, P. @@aut@@ Divya, S. @@aut@@ Parameshwari, R. @@aut@@ Saravanan, C. @@aut@@ Sagadevan, Suresh @@aut@@ Arumugam, S. @@aut@@ Esakki Muthu, S. @@aut@@ |
publishDateDaySort_date |
2020-08-12T00:00:00Z |
hierarchy_top_id |
130863289 |
dewey-sort |
3600 |
id |
OLC2120604150 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2120604150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504180804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-020-04187-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2120604150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-020-04187-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sivaprakash, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Divya, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parameshwari, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saravanan, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagadevan, Suresh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arumugam, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esakki Muthu, S.</subfield><subfield code="0">(orcid)0000-0001-8765-9737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">31(2020), 19 vom: 12. Aug., Seite 16369-16378</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:19</subfield><subfield code="g">day:12</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:16369-16378</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-020-04187-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2020</subfield><subfield code="e">19</subfield><subfield code="b">12</subfield><subfield code="c">08</subfield><subfield code="h">16369-16378</subfield></datafield></record></collection>
|
author |
Sivaprakash, P. |
spellingShingle |
Sivaprakash, P. ddc 600 Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
authorStr |
Sivaprakash, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863289 |
format |
Article |
dewey-ones |
600 - Technology 670 - Manufacturing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4522 |
topic_title |
600 670 620 VZ Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
topic |
ddc 600 |
topic_unstemmed |
ddc 600 |
topic_browse |
ddc 600 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in electronics |
hierarchy_parent_id |
130863289 |
dewey-tens |
600 - Technology 670 - Manufacturing 620 - Engineering |
hierarchy_top_title |
Journal of materials science / Materials in electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 |
title |
Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
ctrlnum |
(DE-627)OLC2120604150 (DE-He213)s10854-020-04187-9-p |
title_full |
Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
author_sort |
Sivaprakash, P. |
journal |
Journal of materials science / Materials in electronics |
journalStr |
Journal of materials science / Materials in electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
16369 |
author_browse |
Sivaprakash, P. Divya, S. Parameshwari, R. Saravanan, C. Sagadevan, Suresh Arumugam, S. Esakki Muthu, S. |
container_volume |
31 |
class |
600 670 620 VZ |
format_se |
Aufsätze |
author-letter |
Sivaprakash, P. |
doi_str_mv |
10.1007/s10854-020-04187-9 |
normlink |
(ORCID)0000-0001-8765-9737 |
normlink_prefix_str_mv |
(orcid)0000-0001-8765-9737 |
dewey-full |
600 670 620 |
title_sort |
influence of $ zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ nife_{2} $$ o_{4} $ composite |
title_auth |
Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
abstract |
Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2004 GBV_ILN_2015 |
container_issue |
19 |
title_short |
Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite |
url |
https://doi.org/10.1007/s10854-020-04187-9 |
remote_bool |
false |
author2 |
Divya, S. Parameshwari, R. Saravanan, C. Sagadevan, Suresh Arumugam, S. Esakki Muthu, S. |
author2Str |
Divya, S. Parameshwari, R. Saravanan, C. Sagadevan, Suresh Arumugam, S. Esakki Muthu, S. |
ppnlink |
130863289 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10854-020-04187-9 |
up_date |
2024-07-04T04:35:50.732Z |
_version_ |
1803621761795751936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2120604150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504180804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-020-04187-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2120604150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-020-04187-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sivaprakash, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of $ Zn^{2+} $ doping towards the structural, magnetic, and dielectric properties of $ NiFe_{2} $$ O_{4} $ composite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present work is aimed to study the changes in characteristics of nickel ferrites followed by the zinc doping and for that, the nanocrystalline Ni–Zn ferrites ($ Ni_{1−x} $$ Zn_{x} $$ Fe_{2} $$ O_{4} $: x = 0, x = 0.2 and x = 0.4) were prepared via sol–gel auto combustion method and by annealing at subsequent temperature. The physical characterization studies of the final composite provided that the lattice structure of $ Zn^{2+} $ substituted at Ni sites confirms for the single-phase ferrite with spinel structure got investigated at room temperature (RT) with functional, morphological as well as temperature-dependent magnetic and dielectric properties. The magnetic properties imply that the distribution of cations at the lattice sites suggests that the magnetization is getting increased with a decrease of temperature from RT to lower temperature in a field cooling process and is due to the strong dipolar magnetostatic interactions between the individual magnetic moments, which also affirms that the magnetization decreases with a decrease of Ni concentration. The coercively extracted from isothermal magnetization curves attributed to the single domain nature at RT. Further, the dielectric constant (ε′) and dielectric loss (tan δ) are also examined and found to be strongly dependent on the function of frequency and temperature. The change in ε′ and tan δ demonstrated that the dispersion due to the Maxwell–Wagner interfacial polarization and is in a good agreement with Koop’s theory.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Divya, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parameshwari, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saravanan, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagadevan, Suresh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arumugam, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esakki Muthu, S.</subfield><subfield code="0">(orcid)0000-0001-8765-9737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">31(2020), 19 vom: 12. Aug., Seite 16369-16378</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:19</subfield><subfield code="g">day:12</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:16369-16378</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-020-04187-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2020</subfield><subfield code="e">19</subfield><subfield code="b">12</subfield><subfield code="c">08</subfield><subfield code="h">16369-16378</subfield></datafield></record></collection>
|
score |
7.398144 |