X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission
Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volu...
Ausführliche Beschreibung
Autor*in: |
Smetanin, I. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of Russian laser research - Springer US, 1994, 41(2020), 6 vom: Nov., Seite 608-615 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2020 ; number:6 ; month:11 ; pages:608-615 |
Links: |
---|
DOI / URN: |
10.1007/s10946-020-09915-4 |
---|
Katalog-ID: |
OLC2121091351 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2121091351 | ||
003 | DE-627 | ||
005 | 20230504182742.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10946-020-09915-4 |2 doi | |
035 | |a (DE-627)OLC2121091351 | ||
035 | |a (DE-He213)s10946-020-09915-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Smetanin, I. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. | ||
650 | 4 | |a random cavity | |
650 | 4 | |a nanosecond vacuum discharge | |
650 | 4 | |a spontaneous X-ray burst | |
700 | 1 | |a Kurilenkov, Yu. K. |4 aut | |
700 | 1 | |a Oginov, A. V. |4 aut | |
700 | 1 | |a Samoylov, I. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of Russian laser research |d Springer US, 1994 |g 41(2020), 6 vom: Nov., Seite 608-615 |w (DE-627)182306879 |w (DE-600)1195919-8 |w (DE-576)045287678 |x 1071-2836 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2020 |g number:6 |g month:11 |g pages:608-615 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10946-020-09915-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
951 | |a AR | ||
952 | |d 41 |j 2020 |e 6 |c 11 |h 608-615 |
author_variant |
i v s iv ivs y k k yk ykk a v o av avo i s s is iss |
---|---|
matchkey_str |
article:10712836:2020----::ryussrmrnocvteegniaitrlcrdpldsespamonnscnvcudshr |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10946-020-09915-4 doi (DE-627)OLC2121091351 (DE-He213)s10946-020-09915-4-p DE-627 ger DE-627 rakwb eng 530 VZ Smetanin, I. V. verfasserin aut X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. random cavity nanosecond vacuum discharge spontaneous X-ray burst Kurilenkov, Yu. K. aut Oginov, A. V. aut Samoylov, I. S. aut Enthalten in Journal of Russian laser research Springer US, 1994 41(2020), 6 vom: Nov., Seite 608-615 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:41 year:2020 number:6 month:11 pages:608-615 https://doi.org/10.1007/s10946-020-09915-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 41 2020 6 11 608-615 |
spelling |
10.1007/s10946-020-09915-4 doi (DE-627)OLC2121091351 (DE-He213)s10946-020-09915-4-p DE-627 ger DE-627 rakwb eng 530 VZ Smetanin, I. V. verfasserin aut X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. random cavity nanosecond vacuum discharge spontaneous X-ray burst Kurilenkov, Yu. K. aut Oginov, A. V. aut Samoylov, I. S. aut Enthalten in Journal of Russian laser research Springer US, 1994 41(2020), 6 vom: Nov., Seite 608-615 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:41 year:2020 number:6 month:11 pages:608-615 https://doi.org/10.1007/s10946-020-09915-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 41 2020 6 11 608-615 |
allfields_unstemmed |
10.1007/s10946-020-09915-4 doi (DE-627)OLC2121091351 (DE-He213)s10946-020-09915-4-p DE-627 ger DE-627 rakwb eng 530 VZ Smetanin, I. V. verfasserin aut X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. random cavity nanosecond vacuum discharge spontaneous X-ray burst Kurilenkov, Yu. K. aut Oginov, A. V. aut Samoylov, I. S. aut Enthalten in Journal of Russian laser research Springer US, 1994 41(2020), 6 vom: Nov., Seite 608-615 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:41 year:2020 number:6 month:11 pages:608-615 https://doi.org/10.1007/s10946-020-09915-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 41 2020 6 11 608-615 |
allfieldsGer |
10.1007/s10946-020-09915-4 doi (DE-627)OLC2121091351 (DE-He213)s10946-020-09915-4-p DE-627 ger DE-627 rakwb eng 530 VZ Smetanin, I. V. verfasserin aut X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. random cavity nanosecond vacuum discharge spontaneous X-ray burst Kurilenkov, Yu. K. aut Oginov, A. V. aut Samoylov, I. S. aut Enthalten in Journal of Russian laser research Springer US, 1994 41(2020), 6 vom: Nov., Seite 608-615 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:41 year:2020 number:6 month:11 pages:608-615 https://doi.org/10.1007/s10946-020-09915-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 41 2020 6 11 608-615 |
allfieldsSound |
10.1007/s10946-020-09915-4 doi (DE-627)OLC2121091351 (DE-He213)s10946-020-09915-4-p DE-627 ger DE-627 rakwb eng 530 VZ Smetanin, I. V. verfasserin aut X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. random cavity nanosecond vacuum discharge spontaneous X-ray burst Kurilenkov, Yu. K. aut Oginov, A. V. aut Samoylov, I. S. aut Enthalten in Journal of Russian laser research Springer US, 1994 41(2020), 6 vom: Nov., Seite 608-615 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:41 year:2020 number:6 month:11 pages:608-615 https://doi.org/10.1007/s10946-020-09915-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 41 2020 6 11 608-615 |
language |
English |
source |
Enthalten in Journal of Russian laser research 41(2020), 6 vom: Nov., Seite 608-615 volume:41 year:2020 number:6 month:11 pages:608-615 |
sourceStr |
Enthalten in Journal of Russian laser research 41(2020), 6 vom: Nov., Seite 608-615 volume:41 year:2020 number:6 month:11 pages:608-615 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
random cavity nanosecond vacuum discharge spontaneous X-ray burst |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of Russian laser research |
authorswithroles_txt_mv |
Smetanin, I. V. @@aut@@ Kurilenkov, Yu. K. @@aut@@ Oginov, A. V. @@aut@@ Samoylov, I. S. @@aut@@ |
publishDateDaySort_date |
2020-11-01T00:00:00Z |
hierarchy_top_id |
182306879 |
dewey-sort |
3530 |
id |
OLC2121091351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121091351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504182742.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10946-020-09915-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121091351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10946-020-09915-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smetanin, I. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random cavity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosecond vacuum discharge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spontaneous X-ray burst</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurilenkov, Yu. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oginov, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samoylov, I. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Russian laser research</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">41(2020), 6 vom: Nov., Seite 608-615</subfield><subfield code="w">(DE-627)182306879</subfield><subfield code="w">(DE-600)1195919-8</subfield><subfield code="w">(DE-576)045287678</subfield><subfield code="x">1071-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:608-615</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10946-020-09915-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">608-615</subfield></datafield></record></collection>
|
author |
Smetanin, I. V. |
spellingShingle |
Smetanin, I. V. ddc 530 misc random cavity misc nanosecond vacuum discharge misc spontaneous X-ray burst X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission |
authorStr |
Smetanin, I. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182306879 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1071-2836 |
topic_title |
530 VZ X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission random cavity nanosecond vacuum discharge spontaneous X-ray burst |
topic |
ddc 530 misc random cavity misc nanosecond vacuum discharge misc spontaneous X-ray burst |
topic_unstemmed |
ddc 530 misc random cavity misc nanosecond vacuum discharge misc spontaneous X-ray burst |
topic_browse |
ddc 530 misc random cavity misc nanosecond vacuum discharge misc spontaneous X-ray burst |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of Russian laser research |
hierarchy_parent_id |
182306879 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of Russian laser research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 |
title |
X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission |
ctrlnum |
(DE-627)OLC2121091351 (DE-He213)s10946-020-09915-4-p |
title_full |
X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission |
author_sort |
Smetanin, I. V. |
journal |
Journal of Russian laser research |
journalStr |
Journal of Russian laser research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
608 |
author_browse |
Smetanin, I. V. Kurilenkov, Yu. K. Oginov, A. V. Samoylov, I. S. |
container_volume |
41 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Smetanin, I. V. |
doi_str_mv |
10.1007/s10946-020-09915-4 |
dewey-full |
530 |
title_sort |
x-ray bursts from a random cavity emerging in an inter-electrode polydisperse plasma of nanosecond vacuum discharge. ii. diffusion model of x-ray emission |
title_auth |
X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission |
abstract |
Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY |
container_issue |
6 |
title_short |
X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission |
url |
https://doi.org/10.1007/s10946-020-09915-4 |
remote_bool |
false |
author2 |
Kurilenkov, Yu. K. Oginov, A. V. Samoylov, I. S. |
author2Str |
Kurilenkov, Yu. K. Oginov, A. V. Samoylov, I. S. |
ppnlink |
182306879 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10946-020-09915-4 |
up_date |
2024-07-04T05:57:38.739Z |
_version_ |
1803626908198371328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121091351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504182742.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10946-020-09915-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121091351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10946-020-09915-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smetanin, I. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trapping” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trapping regime corresponds to the slow developing diffusion, which characteristic time is larger than the discharge duration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random cavity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosecond vacuum discharge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spontaneous X-ray burst</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurilenkov, Yu. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oginov, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samoylov, I. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Russian laser research</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">41(2020), 6 vom: Nov., Seite 608-615</subfield><subfield code="w">(DE-627)182306879</subfield><subfield code="w">(DE-600)1195919-8</subfield><subfield code="w">(DE-576)045287678</subfield><subfield code="x">1071-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:608-615</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10946-020-09915-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="c">11</subfield><subfield code="h">608-615</subfield></datafield></record></collection>
|
score |
7.4012547 |