Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications
Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam...
Ausführliche Beschreibung
Autor*in: |
Li, Minghui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Carbonates and evaporites - Springer Berlin Heidelberg, 1986, 35(2020), 4 vom: 06. Nov. |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2020 ; number:4 ; day:06 ; month:11 |
Links: |
---|
DOI / URN: |
10.1007/s13146-020-00660-y |
---|
Katalog-ID: |
OLC2121408967 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2121408967 | ||
003 | DE-627 | ||
005 | 20230504183932.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s13146-020-00660-y |2 doi | |
035 | |a (DE-627)OLC2121408967 | ||
035 | |a (DE-He213)s13146-020-00660-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 13 |2 ssgn | ||
100 | 1 | |a Li, Minghui |e verfasserin |0 (orcid)0000-0001-8192-7091 |4 aut | |
245 | 1 | 0 | |a Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2020 | ||
520 | |a Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. | ||
650 | 4 | |a Magnesium isotopes | |
650 | 4 | |a Sulfur isotopes | |
650 | 4 | |a Oxygen and hydrogen isotopes | |
650 | 4 | |a Salt minerals | |
700 | 1 | |a Fang, Xiaomin |4 aut | |
700 | 1 | |a Galy, Albert |4 aut | |
700 | 1 | |a Wang, Huiling |4 aut | |
700 | 1 | |a Song, Xiangsuo |4 aut | |
700 | 1 | |a Wang, Xiaoxiao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Carbonates and evaporites |d Springer Berlin Heidelberg, 1986 |g 35(2020), 4 vom: 06. Nov. |w (DE-627)165666978 |w (DE-600)1037732-3 |w (DE-576)09095369X |x 0891-2556 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2020 |g number:4 |g day:06 |g month:11 |
856 | 4 | 1 | |u https://doi.org/10.1007/s13146-020-00660-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 35 |j 2020 |e 4 |b 06 |c 11 |
author_variant |
m l ml x f xf a g ag h w hw x s xs x w xw |
---|---|
matchkey_str |
article:08912556:2020----::yrtduftmnrlbodtadoyaieomtoadaee |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s13146-020-00660-y doi (DE-627)OLC2121408967 (DE-He213)s13146-020-00660-y-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 13 ssgn Li, Minghui verfasserin (orcid)0000-0001-8192-7091 aut Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals Fang, Xiaomin aut Galy, Albert aut Wang, Huiling aut Song, Xiangsuo aut Wang, Xiaoxiao aut Enthalten in Carbonates and evaporites Springer Berlin Heidelberg, 1986 35(2020), 4 vom: 06. Nov. (DE-627)165666978 (DE-600)1037732-3 (DE-576)09095369X 0891-2556 nnns volume:35 year:2020 number:4 day:06 month:11 https://doi.org/10.1007/s13146-020-00660-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 35 2020 4 06 11 |
spelling |
10.1007/s13146-020-00660-y doi (DE-627)OLC2121408967 (DE-He213)s13146-020-00660-y-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 13 ssgn Li, Minghui verfasserin (orcid)0000-0001-8192-7091 aut Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals Fang, Xiaomin aut Galy, Albert aut Wang, Huiling aut Song, Xiangsuo aut Wang, Xiaoxiao aut Enthalten in Carbonates and evaporites Springer Berlin Heidelberg, 1986 35(2020), 4 vom: 06. Nov. (DE-627)165666978 (DE-600)1037732-3 (DE-576)09095369X 0891-2556 nnns volume:35 year:2020 number:4 day:06 month:11 https://doi.org/10.1007/s13146-020-00660-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 35 2020 4 06 11 |
allfields_unstemmed |
10.1007/s13146-020-00660-y doi (DE-627)OLC2121408967 (DE-He213)s13146-020-00660-y-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 13 ssgn Li, Minghui verfasserin (orcid)0000-0001-8192-7091 aut Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals Fang, Xiaomin aut Galy, Albert aut Wang, Huiling aut Song, Xiangsuo aut Wang, Xiaoxiao aut Enthalten in Carbonates and evaporites Springer Berlin Heidelberg, 1986 35(2020), 4 vom: 06. Nov. (DE-627)165666978 (DE-600)1037732-3 (DE-576)09095369X 0891-2556 nnns volume:35 year:2020 number:4 day:06 month:11 https://doi.org/10.1007/s13146-020-00660-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 35 2020 4 06 11 |
allfieldsGer |
10.1007/s13146-020-00660-y doi (DE-627)OLC2121408967 (DE-He213)s13146-020-00660-y-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 13 ssgn Li, Minghui verfasserin (orcid)0000-0001-8192-7091 aut Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals Fang, Xiaomin aut Galy, Albert aut Wang, Huiling aut Song, Xiangsuo aut Wang, Xiaoxiao aut Enthalten in Carbonates and evaporites Springer Berlin Heidelberg, 1986 35(2020), 4 vom: 06. Nov. (DE-627)165666978 (DE-600)1037732-3 (DE-576)09095369X 0891-2556 nnns volume:35 year:2020 number:4 day:06 month:11 https://doi.org/10.1007/s13146-020-00660-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 35 2020 4 06 11 |
allfieldsSound |
10.1007/s13146-020-00660-y doi (DE-627)OLC2121408967 (DE-He213)s13146-020-00660-y-p DE-627 ger DE-627 rakwb eng 550 VZ 550 VZ 13 ssgn Li, Minghui verfasserin (orcid)0000-0001-8192-7091 aut Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals Fang, Xiaomin aut Galy, Albert aut Wang, Huiling aut Song, Xiangsuo aut Wang, Xiaoxiao aut Enthalten in Carbonates and evaporites Springer Berlin Heidelberg, 1986 35(2020), 4 vom: 06. Nov. (DE-627)165666978 (DE-600)1037732-3 (DE-576)09095369X 0891-2556 nnns volume:35 year:2020 number:4 day:06 month:11 https://doi.org/10.1007/s13146-020-00660-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 35 2020 4 06 11 |
language |
English |
source |
Enthalten in Carbonates and evaporites 35(2020), 4 vom: 06. Nov. volume:35 year:2020 number:4 day:06 month:11 |
sourceStr |
Enthalten in Carbonates and evaporites 35(2020), 4 vom: 06. Nov. volume:35 year:2020 number:4 day:06 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Carbonates and evaporites |
authorswithroles_txt_mv |
Li, Minghui @@aut@@ Fang, Xiaomin @@aut@@ Galy, Albert @@aut@@ Wang, Huiling @@aut@@ Song, Xiangsuo @@aut@@ Wang, Xiaoxiao @@aut@@ |
publishDateDaySort_date |
2020-11-06T00:00:00Z |
hierarchy_top_id |
165666978 |
dewey-sort |
3550 |
id |
OLC2121408967 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121408967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504183932.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13146-020-00660-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121408967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s13146-020-00660-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Minghui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8192-7091</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sulfur isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen and hydrogen isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salt minerals</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Xiaomin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galy, Albert</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Huiling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Xiangsuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbonates and evaporites</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">35(2020), 4 vom: 06. Nov.</subfield><subfield code="w">(DE-627)165666978</subfield><subfield code="w">(DE-600)1037732-3</subfield><subfield code="w">(DE-576)09095369X</subfield><subfield code="x">0891-2556</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s13146-020-00660-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">06</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Li, Minghui |
spellingShingle |
Li, Minghui ddc 550 ssgn 13 misc Magnesium isotopes misc Sulfur isotopes misc Oxygen and hydrogen isotopes misc Salt minerals Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
authorStr |
Li, Minghui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165666978 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0891-2556 |
topic_title |
550 VZ 13 ssgn Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications Magnesium isotopes Sulfur isotopes Oxygen and hydrogen isotopes Salt minerals |
topic |
ddc 550 ssgn 13 misc Magnesium isotopes misc Sulfur isotopes misc Oxygen and hydrogen isotopes misc Salt minerals |
topic_unstemmed |
ddc 550 ssgn 13 misc Magnesium isotopes misc Sulfur isotopes misc Oxygen and hydrogen isotopes misc Salt minerals |
topic_browse |
ddc 550 ssgn 13 misc Magnesium isotopes misc Sulfur isotopes misc Oxygen and hydrogen isotopes misc Salt minerals |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Carbonates and evaporites |
hierarchy_parent_id |
165666978 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Carbonates and evaporites |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165666978 (DE-600)1037732-3 (DE-576)09095369X |
title |
Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
ctrlnum |
(DE-627)OLC2121408967 (DE-He213)s13146-020-00660-y-p |
title_full |
Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
author_sort |
Li, Minghui |
journal |
Carbonates and evaporites |
journalStr |
Carbonates and evaporites |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Li, Minghui Fang, Xiaomin Galy, Albert Wang, Huiling Song, Xiangsuo Wang, Xiaoxiao |
container_volume |
35 |
class |
550 VZ 13 ssgn |
format_se |
Aufsätze |
author-letter |
Li, Minghui |
doi_str_mv |
10.1007/s13146-020-00660-y |
normlink |
(ORCID)0000-0001-8192-7091 |
normlink_prefix_str_mv |
(orcid)0000-0001-8192-7091 |
dewey-full |
550 |
title_sort |
hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
title_auth |
Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
abstract |
Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstractGer |
Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications |
url |
https://doi.org/10.1007/s13146-020-00660-y |
remote_bool |
false |
author2 |
Fang, Xiaomin Galy, Albert Wang, Huiling Song, Xiangsuo Wang, Xiaoxiao |
author2Str |
Fang, Xiaomin Galy, Albert Wang, Huiling Song, Xiangsuo Wang, Xiaoxiao |
ppnlink |
165666978 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13146-020-00660-y |
up_date |
2024-07-04T06:50:34.791Z |
_version_ |
1803630238543904768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121408967</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504183932.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13146-020-00660-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121408967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s13146-020-00660-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Minghui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8192-7091</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their $ SO_{4} $ and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sulfur isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen and hydrogen isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salt minerals</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Xiaomin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galy, Albert</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Huiling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Xiangsuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbonates and evaporites</subfield><subfield code="d">Springer Berlin Heidelberg, 1986</subfield><subfield code="g">35(2020), 4 vom: 06. Nov.</subfield><subfield code="w">(DE-627)165666978</subfield><subfield code="w">(DE-600)1037732-3</subfield><subfield code="w">(DE-576)09095369X</subfield><subfield code="x">0891-2556</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s13146-020-00660-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">06</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401394 |