Laser-induced nanoparticle ordering
Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the fo...
Ausführliche Beschreibung
Autor*in: |
Pedraza, A. J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Systematik: |
|
---|
Anmerkung: |
© The Materials Research Society 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials research - Springer International Publishing, 1986, 17(2002), 11 vom: 01. Nov., Seite 2815-2822 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2002 ; number:11 ; day:01 ; month:11 ; pages:2815-2822 |
Links: |
---|
DOI / URN: |
10.1557/JMR.2002.0409 |
---|
Katalog-ID: |
OLC2121649913 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2121649913 | ||
003 | DE-627 | ||
005 | 20230504185333.0 | ||
007 | tu | ||
008 | 230504s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1557/JMR.2002.0409 |2 doi | |
035 | |a (DE-627)OLC2121649913 | ||
035 | |a (DE-He213)JMR.2002.0409-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a VA 5350 |q VZ |2 rvk | ||
100 | 1 | |a Pedraza, A. J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Laser-induced nanoparticle ordering |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Materials Research Society 2002 | ||
520 | |a Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. | ||
700 | 1 | |a Fowlkes, J. D. |4 aut | |
700 | 1 | |a Blom, D. A. |4 aut | |
700 | 1 | |a Meyer, H. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials research |d Springer International Publishing, 1986 |g 17(2002), 11 vom: 01. Nov., Seite 2815-2822 |w (DE-627)129206288 |w (DE-600)54876-5 |w (DE-576)01445744X |x 0884-2914 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2002 |g number:11 |g day:01 |g month:11 |g pages:2815-2822 |
856 | 4 | 1 | |u https://doi.org/10.1557/JMR.2002.0409 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a VA 5350 |
951 | |a AR | ||
952 | |d 17 |j 2002 |e 11 |b 01 |c 11 |h 2815-2822 |
author_variant |
a j p aj ajp j d f jd jdf d a b da dab h m m hm hmm |
---|---|
matchkey_str |
article:08842914:2002----::aeidcdaoatce |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1557/JMR.2002.0409 doi (DE-627)OLC2121649913 (DE-He213)JMR.2002.0409-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Pedraza, A. J. verfasserin aut Laser-induced nanoparticle ordering 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2002 Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. Fowlkes, J. D. aut Blom, D. A. aut Meyer, H. M. aut Enthalten in Journal of materials research Springer International Publishing, 1986 17(2002), 11 vom: 01. Nov., Seite 2815-2822 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 https://doi.org/10.1557/JMR.2002.0409 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 17 2002 11 01 11 2815-2822 |
spelling |
10.1557/JMR.2002.0409 doi (DE-627)OLC2121649913 (DE-He213)JMR.2002.0409-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Pedraza, A. J. verfasserin aut Laser-induced nanoparticle ordering 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2002 Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. Fowlkes, J. D. aut Blom, D. A. aut Meyer, H. M. aut Enthalten in Journal of materials research Springer International Publishing, 1986 17(2002), 11 vom: 01. Nov., Seite 2815-2822 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 https://doi.org/10.1557/JMR.2002.0409 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 17 2002 11 01 11 2815-2822 |
allfields_unstemmed |
10.1557/JMR.2002.0409 doi (DE-627)OLC2121649913 (DE-He213)JMR.2002.0409-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Pedraza, A. J. verfasserin aut Laser-induced nanoparticle ordering 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2002 Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. Fowlkes, J. D. aut Blom, D. A. aut Meyer, H. M. aut Enthalten in Journal of materials research Springer International Publishing, 1986 17(2002), 11 vom: 01. Nov., Seite 2815-2822 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 https://doi.org/10.1557/JMR.2002.0409 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 17 2002 11 01 11 2815-2822 |
allfieldsGer |
10.1557/JMR.2002.0409 doi (DE-627)OLC2121649913 (DE-He213)JMR.2002.0409-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Pedraza, A. J. verfasserin aut Laser-induced nanoparticle ordering 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2002 Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. Fowlkes, J. D. aut Blom, D. A. aut Meyer, H. M. aut Enthalten in Journal of materials research Springer International Publishing, 1986 17(2002), 11 vom: 01. Nov., Seite 2815-2822 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 https://doi.org/10.1557/JMR.2002.0409 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 17 2002 11 01 11 2815-2822 |
allfieldsSound |
10.1557/JMR.2002.0409 doi (DE-627)OLC2121649913 (DE-He213)JMR.2002.0409-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Pedraza, A. J. verfasserin aut Laser-induced nanoparticle ordering 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2002 Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. Fowlkes, J. D. aut Blom, D. A. aut Meyer, H. M. aut Enthalten in Journal of materials research Springer International Publishing, 1986 17(2002), 11 vom: 01. Nov., Seite 2815-2822 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 https://doi.org/10.1557/JMR.2002.0409 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 17 2002 11 01 11 2815-2822 |
language |
English |
source |
Enthalten in Journal of materials research 17(2002), 11 vom: 01. Nov., Seite 2815-2822 volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 |
sourceStr |
Enthalten in Journal of materials research 17(2002), 11 vom: 01. Nov., Seite 2815-2822 volume:17 year:2002 number:11 day:01 month:11 pages:2815-2822 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials research |
authorswithroles_txt_mv |
Pedraza, A. J. @@aut@@ Fowlkes, J. D. @@aut@@ Blom, D. A. @@aut@@ Meyer, H. M. @@aut@@ |
publishDateDaySort_date |
2002-11-01T00:00:00Z |
hierarchy_top_id |
129206288 |
dewey-sort |
3670 |
id |
OLC2121649913 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121649913</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504185333.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/JMR.2002.0409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121649913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)JMR.2002.0409-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pedraza, A. J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laser-induced nanoparticle ordering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fowlkes, J. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blom, D. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, H. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">17(2002), 11 vom: 01. Nov., Seite 2815-2822</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:11</subfield><subfield code="g">day:01</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2815-2822</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/JMR.2002.0409</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2002</subfield><subfield code="e">11</subfield><subfield code="b">01</subfield><subfield code="c">11</subfield><subfield code="h">2815-2822</subfield></datafield></record></collection>
|
author |
Pedraza, A. J. |
spellingShingle |
Pedraza, A. J. ddc 670 rvk VA 5350 Laser-induced nanoparticle ordering |
authorStr |
Pedraza, A. J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206288 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0884-2914 |
topic_title |
670 VZ VA 5350 VZ rvk Laser-induced nanoparticle ordering |
topic |
ddc 670 rvk VA 5350 |
topic_unstemmed |
ddc 670 rvk VA 5350 |
topic_browse |
ddc 670 rvk VA 5350 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials research |
hierarchy_parent_id |
129206288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X |
title |
Laser-induced nanoparticle ordering |
ctrlnum |
(DE-627)OLC2121649913 (DE-He213)JMR.2002.0409-p |
title_full |
Laser-induced nanoparticle ordering |
author_sort |
Pedraza, A. J. |
journal |
Journal of materials research |
journalStr |
Journal of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
2815 |
author_browse |
Pedraza, A. J. Fowlkes, J. D. Blom, D. A. Meyer, H. M. |
container_volume |
17 |
class |
670 VZ VA 5350 VZ rvk |
format_se |
Aufsätze |
author-letter |
Pedraza, A. J. |
doi_str_mv |
10.1557/JMR.2002.0409 |
dewey-full |
670 |
title_sort |
laser-induced nanoparticle ordering |
title_auth |
Laser-induced nanoparticle ordering |
abstract |
Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. © The Materials Research Society 2002 |
abstractGer |
Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. © The Materials Research Society 2002 |
abstract_unstemmed |
Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism. © The Materials Research Society 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_23 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
11 |
title_short |
Laser-induced nanoparticle ordering |
url |
https://doi.org/10.1557/JMR.2002.0409 |
remote_bool |
false |
author2 |
Fowlkes, J. D. Blom, D. A. Meyer, H. M. |
author2Str |
Fowlkes, J. D. Blom, D. A. Meyer, H. M. |
ppnlink |
129206288 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/JMR.2002.0409 |
up_date |
2024-07-04T07:41:06.694Z |
_version_ |
1803633417721479168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121649913</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504185333.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/JMR.2002.0409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121649913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)JMR.2002.0409-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pedraza, A. J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laser-induced nanoparticle ordering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nanoparticles were produced on the surface of silicon upon pulsed-laser irradiation in the presence of an inert gas atmosphere at fluences close to the melting threshold. It was observed that nanoparticle formation required redeposition of ablated material. Redeposition took place in the form of a thin film intermixed with extremely small nanoparticles possibly formed in the gas phase. Through the use of nonpolarized laser light, it was shown that nanoparticles, fairly uniform in size, became grouped into curvilinear strings distributed with a short-range ordering. Microstructuring of part of the surface prior to the laser treatment had the remarkable effect of producing nanoparticles lying along straight and fairly long (approximately 1 mm) lines, whose spacing equaled the laser wavelength for normal beam incidence. In this work, it is shown that the use of polarized light eliminated the need of an aiding agent: nanoparticle alignment ensued under similar laser treatment conditions. The phenomenon of nanoparticle alignment bears a striking similarity with the phenomenon of laser-induced periodic surface structures (LIPSS), obeying the same dependence of line spacing upon light wavelength and beam angle of incidence as the grating spacing in LIPSS. The new results strongly support the proposition that the two phenomena, LIPSS and laser-induced nanoparticle alignment, evolve as a result of the same light interference mechanism.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fowlkes, J. D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blom, D. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, H. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">17(2002), 11 vom: 01. Nov., Seite 2815-2822</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:11</subfield><subfield code="g">day:01</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2815-2822</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/JMR.2002.0409</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2002</subfield><subfield code="e">11</subfield><subfield code="b">01</subfield><subfield code="c">11</subfield><subfield code="h">2815-2822</subfield></datafield></record></collection>
|
score |
7.402501 |