General Recursive Realizability and Basic Logic
The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved.
Autor*in: |
Konovalov, A. Yu. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebra and logic - Springer US, 1968, 59(2020), 5 vom: Nov., Seite 367-384 |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2020 ; number:5 ; month:11 ; pages:367-384 |
Links: |
---|
DOI / URN: |
10.1007/s10469-020-09610-y |
---|
Katalog-ID: |
OLC2121749322 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2121749322 | ||
003 | DE-627 | ||
005 | 20230504185831.0 | ||
007 | tu | ||
008 | 230504s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10469-020-09610-y |2 doi | |
035 | |a (DE-627)OLC2121749322 | ||
035 | |a (DE-He213)s10469-020-09610-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Konovalov, A. Yu. |e verfasserin |4 aut | |
245 | 1 | 0 | |a General Recursive Realizability and Basic Logic |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. | ||
650 | 4 | |a realizability | |
650 | 4 | |a absolute realizability | |
650 | 4 | |a subrecursive realizability | |
650 | 4 | |a basic logic | |
773 | 0 | 8 | |i Enthalten in |t Algebra and logic |d Springer US, 1968 |g 59(2020), 5 vom: Nov., Seite 367-384 |w (DE-627)129934453 |w (DE-600)390280-8 |w (DE-576)015492621 |x 0002-5232 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2020 |g number:5 |g month:11 |g pages:367-384 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10469-020-09610-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 59 |j 2020 |e 5 |c 11 |h 367-384 |
author_variant |
a y k ay ayk |
---|---|
matchkey_str |
article:00025232:2020----::eearcrieelzblta |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10469-020-09610-y doi (DE-627)OLC2121749322 (DE-He213)s10469-020-09610-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Konovalov, A. Yu. verfasserin aut General Recursive Realizability and Basic Logic 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. realizability absolute realizability subrecursive realizability basic logic Enthalten in Algebra and logic Springer US, 1968 59(2020), 5 vom: Nov., Seite 367-384 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:59 year:2020 number:5 month:11 pages:367-384 https://doi.org/10.1007/s10469-020-09610-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 59 2020 5 11 367-384 |
spelling |
10.1007/s10469-020-09610-y doi (DE-627)OLC2121749322 (DE-He213)s10469-020-09610-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Konovalov, A. Yu. verfasserin aut General Recursive Realizability and Basic Logic 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. realizability absolute realizability subrecursive realizability basic logic Enthalten in Algebra and logic Springer US, 1968 59(2020), 5 vom: Nov., Seite 367-384 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:59 year:2020 number:5 month:11 pages:367-384 https://doi.org/10.1007/s10469-020-09610-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 59 2020 5 11 367-384 |
allfields_unstemmed |
10.1007/s10469-020-09610-y doi (DE-627)OLC2121749322 (DE-He213)s10469-020-09610-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Konovalov, A. Yu. verfasserin aut General Recursive Realizability and Basic Logic 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. realizability absolute realizability subrecursive realizability basic logic Enthalten in Algebra and logic Springer US, 1968 59(2020), 5 vom: Nov., Seite 367-384 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:59 year:2020 number:5 month:11 pages:367-384 https://doi.org/10.1007/s10469-020-09610-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 59 2020 5 11 367-384 |
allfieldsGer |
10.1007/s10469-020-09610-y doi (DE-627)OLC2121749322 (DE-He213)s10469-020-09610-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Konovalov, A. Yu. verfasserin aut General Recursive Realizability and Basic Logic 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. realizability absolute realizability subrecursive realizability basic logic Enthalten in Algebra and logic Springer US, 1968 59(2020), 5 vom: Nov., Seite 367-384 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:59 year:2020 number:5 month:11 pages:367-384 https://doi.org/10.1007/s10469-020-09610-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 59 2020 5 11 367-384 |
allfieldsSound |
10.1007/s10469-020-09610-y doi (DE-627)OLC2121749322 (DE-He213)s10469-020-09610-y-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Konovalov, A. Yu. verfasserin aut General Recursive Realizability and Basic Logic 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. realizability absolute realizability subrecursive realizability basic logic Enthalten in Algebra and logic Springer US, 1968 59(2020), 5 vom: Nov., Seite 367-384 (DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 0002-5232 nnns volume:59 year:2020 number:5 month:11 pages:367-384 https://doi.org/10.1007/s10469-020-09610-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 59 2020 5 11 367-384 |
language |
English |
source |
Enthalten in Algebra and logic 59(2020), 5 vom: Nov., Seite 367-384 volume:59 year:2020 number:5 month:11 pages:367-384 |
sourceStr |
Enthalten in Algebra and logic 59(2020), 5 vom: Nov., Seite 367-384 volume:59 year:2020 number:5 month:11 pages:367-384 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
realizability absolute realizability subrecursive realizability basic logic |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebra and logic |
authorswithroles_txt_mv |
Konovalov, A. Yu. @@aut@@ |
publishDateDaySort_date |
2020-11-01T00:00:00Z |
hierarchy_top_id |
129934453 |
dewey-sort |
3510 |
id |
OLC2121749322 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121749322</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504185831.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10469-020-09610-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121749322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10469-020-09610-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konovalov, A. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General Recursive Realizability and Basic Logic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">realizability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">absolute realizability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subrecursive realizability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">basic logic</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra and logic</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">59(2020), 5 vom: Nov., Seite 367-384</subfield><subfield code="w">(DE-627)129934453</subfield><subfield code="w">(DE-600)390280-8</subfield><subfield code="w">(DE-576)015492621</subfield><subfield code="x">0002-5232</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:367-384</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10469-020-09610-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="c">11</subfield><subfield code="h">367-384</subfield></datafield></record></collection>
|
author |
Konovalov, A. Yu. |
spellingShingle |
Konovalov, A. Yu. ddc 510 ssgn 17,1 misc realizability misc absolute realizability misc subrecursive realizability misc basic logic General Recursive Realizability and Basic Logic |
authorStr |
Konovalov, A. Yu. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129934453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0002-5232 |
topic_title |
510 VZ 17,1 ssgn General Recursive Realizability and Basic Logic realizability absolute realizability subrecursive realizability basic logic |
topic |
ddc 510 ssgn 17,1 misc realizability misc absolute realizability misc subrecursive realizability misc basic logic |
topic_unstemmed |
ddc 510 ssgn 17,1 misc realizability misc absolute realizability misc subrecursive realizability misc basic logic |
topic_browse |
ddc 510 ssgn 17,1 misc realizability misc absolute realizability misc subrecursive realizability misc basic logic |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebra and logic |
hierarchy_parent_id |
129934453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebra and logic |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129934453 (DE-600)390280-8 (DE-576)015492621 |
title |
General Recursive Realizability and Basic Logic |
ctrlnum |
(DE-627)OLC2121749322 (DE-He213)s10469-020-09610-y-p |
title_full |
General Recursive Realizability and Basic Logic |
author_sort |
Konovalov, A. Yu. |
journal |
Algebra and logic |
journalStr |
Algebra and logic |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
367 |
author_browse |
Konovalov, A. Yu. |
container_volume |
59 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Konovalov, A. Yu. |
doi_str_mv |
10.1007/s10469-020-09610-y |
dewey-full |
510 |
title_sort |
general recursive realizability and basic logic |
title_auth |
General Recursive Realizability and Basic Logic |
abstract |
The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
5 |
title_short |
General Recursive Realizability and Basic Logic |
url |
https://doi.org/10.1007/s10469-020-09610-y |
remote_bool |
false |
ppnlink |
129934453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10469-020-09610-y |
up_date |
2024-07-04T07:59:59.134Z |
_version_ |
1803634605169836032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2121749322</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504185831.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10469-020-09610-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2121749322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10469-020-09610-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konovalov, A. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General Recursive Realizability and Basic Logic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The notion of general recursive realizability is defined based on using indices of general recursive functions as a constructive way of obtaining some realizations from others. The soundness of basic logic with respect to the semantics of general recursive realizability is proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">realizability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">absolute realizability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subrecursive realizability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">basic logic</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebra and logic</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">59(2020), 5 vom: Nov., Seite 367-384</subfield><subfield code="w">(DE-627)129934453</subfield><subfield code="w">(DE-600)390280-8</subfield><subfield code="w">(DE-576)015492621</subfield><subfield code="x">0002-5232</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:367-384</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10469-020-09610-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="c">11</subfield><subfield code="h">367-384</subfield></datafield></record></collection>
|
score |
7.401514 |