Rechargeable Mg–Li hybrid batteries: status and challenges
Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been ach...
Ausführliche Beschreibung
Autor*in: |
Cheng, Yingwen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Systematik: |
|
---|
Anmerkung: |
© The Materials Research Society 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials research - Springer International Publishing, 1986, 31(2016), 20 vom: 23. Sept., Seite 3125-3141 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2016 ; number:20 ; day:23 ; month:09 ; pages:3125-3141 |
Links: |
---|
DOI / URN: |
10.1557/jmr.2016.331 |
---|
Katalog-ID: |
OLC2122106298 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2122106298 | ||
003 | DE-627 | ||
005 | 20230504191737.0 | ||
007 | tu | ||
008 | 230504s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1557/jmr.2016.331 |2 doi | |
035 | |a (DE-627)OLC2122106298 | ||
035 | |a (DE-He213)jmr.2016.331-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a VA 5350 |q VZ |2 rvk | ||
100 | 1 | |a Cheng, Yingwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rechargeable Mg–Li hybrid batteries: status and challenges |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Materials Research Society 2016 | ||
520 | |a Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. | ||
700 | 1 | |a Chang, Hee Jung |4 aut | |
700 | 1 | |a Dong, Hui |4 aut | |
700 | 1 | |a Choi, Daiwon |4 aut | |
700 | 1 | |a Sprenkle, Vincent L. |4 aut | |
700 | 1 | |a Liu, Jun |4 aut | |
700 | 1 | |a Yao, Yan |4 aut | |
700 | 1 | |a Li, Guosheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials research |d Springer International Publishing, 1986 |g 31(2016), 20 vom: 23. Sept., Seite 3125-3141 |w (DE-627)129206288 |w (DE-600)54876-5 |w (DE-576)01445744X |x 0884-2914 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2016 |g number:20 |g day:23 |g month:09 |g pages:3125-3141 |
856 | 4 | 1 | |u https://doi.org/10.1557/jmr.2016.331 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a VA 5350 |
951 | |a AR | ||
952 | |d 31 |j 2016 |e 20 |b 23 |c 09 |h 3125-3141 |
author_variant |
y c yc h j c hj hjc h d hd d c dc v l s vl vls j l jl y y yy g l gl |
---|---|
matchkey_str |
article:08842914:2016----::ehrebegiyrdatresau |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1557/jmr.2016.331 doi (DE-627)OLC2122106298 (DE-He213)jmr.2016.331-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cheng, Yingwen verfasserin aut Rechargeable Mg–Li hybrid batteries: status and challenges 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2016 Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. Chang, Hee Jung aut Dong, Hui aut Choi, Daiwon aut Sprenkle, Vincent L. aut Liu, Jun aut Yao, Yan aut Li, Guosheng aut Enthalten in Journal of materials research Springer International Publishing, 1986 31(2016), 20 vom: 23. Sept., Seite 3125-3141 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 https://doi.org/10.1557/jmr.2016.331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 31 2016 20 23 09 3125-3141 |
spelling |
10.1557/jmr.2016.331 doi (DE-627)OLC2122106298 (DE-He213)jmr.2016.331-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cheng, Yingwen verfasserin aut Rechargeable Mg–Li hybrid batteries: status and challenges 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2016 Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. Chang, Hee Jung aut Dong, Hui aut Choi, Daiwon aut Sprenkle, Vincent L. aut Liu, Jun aut Yao, Yan aut Li, Guosheng aut Enthalten in Journal of materials research Springer International Publishing, 1986 31(2016), 20 vom: 23. Sept., Seite 3125-3141 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 https://doi.org/10.1557/jmr.2016.331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 31 2016 20 23 09 3125-3141 |
allfields_unstemmed |
10.1557/jmr.2016.331 doi (DE-627)OLC2122106298 (DE-He213)jmr.2016.331-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cheng, Yingwen verfasserin aut Rechargeable Mg–Li hybrid batteries: status and challenges 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2016 Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. Chang, Hee Jung aut Dong, Hui aut Choi, Daiwon aut Sprenkle, Vincent L. aut Liu, Jun aut Yao, Yan aut Li, Guosheng aut Enthalten in Journal of materials research Springer International Publishing, 1986 31(2016), 20 vom: 23. Sept., Seite 3125-3141 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 https://doi.org/10.1557/jmr.2016.331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 31 2016 20 23 09 3125-3141 |
allfieldsGer |
10.1557/jmr.2016.331 doi (DE-627)OLC2122106298 (DE-He213)jmr.2016.331-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cheng, Yingwen verfasserin aut Rechargeable Mg–Li hybrid batteries: status and challenges 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2016 Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. Chang, Hee Jung aut Dong, Hui aut Choi, Daiwon aut Sprenkle, Vincent L. aut Liu, Jun aut Yao, Yan aut Li, Guosheng aut Enthalten in Journal of materials research Springer International Publishing, 1986 31(2016), 20 vom: 23. Sept., Seite 3125-3141 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 https://doi.org/10.1557/jmr.2016.331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 31 2016 20 23 09 3125-3141 |
allfieldsSound |
10.1557/jmr.2016.331 doi (DE-627)OLC2122106298 (DE-He213)jmr.2016.331-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Cheng, Yingwen verfasserin aut Rechargeable Mg–Li hybrid batteries: status and challenges 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2016 Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. Chang, Hee Jung aut Dong, Hui aut Choi, Daiwon aut Sprenkle, Vincent L. aut Liu, Jun aut Yao, Yan aut Li, Guosheng aut Enthalten in Journal of materials research Springer International Publishing, 1986 31(2016), 20 vom: 23. Sept., Seite 3125-3141 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 https://doi.org/10.1557/jmr.2016.331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 31 2016 20 23 09 3125-3141 |
language |
English |
source |
Enthalten in Journal of materials research 31(2016), 20 vom: 23. Sept., Seite 3125-3141 volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 |
sourceStr |
Enthalten in Journal of materials research 31(2016), 20 vom: 23. Sept., Seite 3125-3141 volume:31 year:2016 number:20 day:23 month:09 pages:3125-3141 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials research |
authorswithroles_txt_mv |
Cheng, Yingwen @@aut@@ Chang, Hee Jung @@aut@@ Dong, Hui @@aut@@ Choi, Daiwon @@aut@@ Sprenkle, Vincent L. @@aut@@ Liu, Jun @@aut@@ Yao, Yan @@aut@@ Li, Guosheng @@aut@@ |
publishDateDaySort_date |
2016-09-23T00:00:00Z |
hierarchy_top_id |
129206288 |
dewey-sort |
3670 |
id |
OLC2122106298 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2122106298</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504191737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/jmr.2016.331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2122106298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)jmr.2016.331-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Yingwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rechargeable Mg–Li hybrid batteries: status and challenges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Hee Jung</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Daiwon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sprenkle, Vincent L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Guosheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">31(2016), 20 vom: 23. Sept., Seite 3125-3141</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield><subfield code="g">day:23</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3125-3141</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/jmr.2016.331</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield><subfield code="b">23</subfield><subfield code="c">09</subfield><subfield code="h">3125-3141</subfield></datafield></record></collection>
|
author |
Cheng, Yingwen |
spellingShingle |
Cheng, Yingwen ddc 670 rvk VA 5350 Rechargeable Mg–Li hybrid batteries: status and challenges |
authorStr |
Cheng, Yingwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206288 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0884-2914 |
topic_title |
670 VZ VA 5350 VZ rvk Rechargeable Mg–Li hybrid batteries: status and challenges |
topic |
ddc 670 rvk VA 5350 |
topic_unstemmed |
ddc 670 rvk VA 5350 |
topic_browse |
ddc 670 rvk VA 5350 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials research |
hierarchy_parent_id |
129206288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X |
title |
Rechargeable Mg–Li hybrid batteries: status and challenges |
ctrlnum |
(DE-627)OLC2122106298 (DE-He213)jmr.2016.331-p |
title_full |
Rechargeable Mg–Li hybrid batteries: status and challenges |
author_sort |
Cheng, Yingwen |
journal |
Journal of materials research |
journalStr |
Journal of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
3125 |
author_browse |
Cheng, Yingwen Chang, Hee Jung Dong, Hui Choi, Daiwon Sprenkle, Vincent L. Liu, Jun Yao, Yan Li, Guosheng |
container_volume |
31 |
class |
670 VZ VA 5350 VZ rvk |
format_se |
Aufsätze |
author-letter |
Cheng, Yingwen |
doi_str_mv |
10.1557/jmr.2016.331 |
dewey-full |
670 |
title_sort |
rechargeable mg–li hybrid batteries: status and challenges |
title_auth |
Rechargeable Mg–Li hybrid batteries: status and challenges |
abstract |
Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. © The Materials Research Society 2016 |
abstractGer |
Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. © The Materials Research Society 2016 |
abstract_unstemmed |
Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction. © The Materials Research Society 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
20 |
title_short |
Rechargeable Mg–Li hybrid batteries: status and challenges |
url |
https://doi.org/10.1557/jmr.2016.331 |
remote_bool |
false |
author2 |
Chang, Hee Jung Dong, Hui Choi, Daiwon Sprenkle, Vincent L. Liu, Jun Yao, Yan Li, Guosheng |
author2Str |
Chang, Hee Jung Dong, Hui Choi, Daiwon Sprenkle, Vincent L. Liu, Jun Yao, Yan Li, Guosheng |
ppnlink |
129206288 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/jmr.2016.331 |
up_date |
2024-07-04T09:06:22.261Z |
_version_ |
1803638781785407488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2122106298</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504191737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230504s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/jmr.2016.331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2122106298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)jmr.2016.331-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Yingwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rechargeable Mg–Li hybrid batteries: status and challenges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a $ Li^{+} $ intercalation cathode, and a dual-salt electrolyte with both $ Mg^{2+} $ and $ Li^{+} $ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Hee Jung</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Daiwon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sprenkle, Vincent L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Guosheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">31(2016), 20 vom: 23. Sept., Seite 3125-3141</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:20</subfield><subfield code="g">day:23</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3125-3141</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/jmr.2016.331</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">20</subfield><subfield code="b">23</subfield><subfield code="c">09</subfield><subfield code="h">3125-3141</subfield></datafield></record></collection>
|
score |
7.400463 |