Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm
Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are opt...
Ausführliche Beschreibung
Autor*in: |
Van Kien, Cao [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Hybrid adaptive optimal control Differential evolution (DE) algorithm |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied intelligence - Springer US, 1991, 51(2020), 1 vom: 20. Aug., Seite 527-548 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2020 ; number:1 ; day:20 ; month:08 ; pages:527-548 |
Links: |
---|
DOI / URN: |
10.1007/s10489-020-01819-9 |
---|
Katalog-ID: |
OLC2122314966 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2122314966 | ||
003 | DE-627 | ||
005 | 20230505062241.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10489-020-01819-9 |2 doi | |
035 | |a (DE-627)OLC2122314966 | ||
035 | |a (DE-He213)s10489-020-01819-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Van Kien, Cao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. | ||
650 | 4 | |a Adaptive inverse multilayer T-S fuzzy controller (AIMFC) | |
650 | 4 | |a Uncertain nonlinear system | |
650 | 4 | |a Hybrid adaptive optimal control | |
650 | 4 | |a Differential evolution (DE) algorithm | |
650 | 4 | |a Lyapunov stability principle | |
650 | 4 | |a Spring-mass-damper (SMD) benchmark system | |
650 | 4 | |a Coupled-liquid tank system | |
700 | 1 | |a Anh, Ho Pham Huy |0 (orcid)0000-0001-7353-8205 |4 aut | |
700 | 1 | |a Son, Nguyen Ngoc |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied intelligence |d Springer US, 1991 |g 51(2020), 1 vom: 20. Aug., Seite 527-548 |w (DE-627)130990515 |w (DE-600)1080229-0 |w (DE-576)029154286 |x 0924-669X |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2020 |g number:1 |g day:20 |g month:08 |g pages:527-548 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10489-020-01819-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 51 |j 2020 |e 1 |b 20 |c 08 |h 527-548 |
author_variant |
k c v kc kcv h p h a hph hpha n n s nn nns |
---|---|
matchkey_str |
article:0924669X:2020----::dpienesmliaefzyotofrnetinnierytmpiiigihi |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10489-020-01819-9 doi (DE-627)OLC2122314966 (DE-He213)s10489-020-01819-9-p DE-627 ger DE-627 rakwb eng 004 VZ Van Kien, Cao verfasserin aut Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system Anh, Ho Pham Huy (orcid)0000-0001-7353-8205 aut Son, Nguyen Ngoc aut Enthalten in Applied intelligence Springer US, 1991 51(2020), 1 vom: 20. Aug., Seite 527-548 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:51 year:2020 number:1 day:20 month:08 pages:527-548 https://doi.org/10.1007/s10489-020-01819-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 51 2020 1 20 08 527-548 |
spelling |
10.1007/s10489-020-01819-9 doi (DE-627)OLC2122314966 (DE-He213)s10489-020-01819-9-p DE-627 ger DE-627 rakwb eng 004 VZ Van Kien, Cao verfasserin aut Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system Anh, Ho Pham Huy (orcid)0000-0001-7353-8205 aut Son, Nguyen Ngoc aut Enthalten in Applied intelligence Springer US, 1991 51(2020), 1 vom: 20. Aug., Seite 527-548 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:51 year:2020 number:1 day:20 month:08 pages:527-548 https://doi.org/10.1007/s10489-020-01819-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 51 2020 1 20 08 527-548 |
allfields_unstemmed |
10.1007/s10489-020-01819-9 doi (DE-627)OLC2122314966 (DE-He213)s10489-020-01819-9-p DE-627 ger DE-627 rakwb eng 004 VZ Van Kien, Cao verfasserin aut Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system Anh, Ho Pham Huy (orcid)0000-0001-7353-8205 aut Son, Nguyen Ngoc aut Enthalten in Applied intelligence Springer US, 1991 51(2020), 1 vom: 20. Aug., Seite 527-548 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:51 year:2020 number:1 day:20 month:08 pages:527-548 https://doi.org/10.1007/s10489-020-01819-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 51 2020 1 20 08 527-548 |
allfieldsGer |
10.1007/s10489-020-01819-9 doi (DE-627)OLC2122314966 (DE-He213)s10489-020-01819-9-p DE-627 ger DE-627 rakwb eng 004 VZ Van Kien, Cao verfasserin aut Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system Anh, Ho Pham Huy (orcid)0000-0001-7353-8205 aut Son, Nguyen Ngoc aut Enthalten in Applied intelligence Springer US, 1991 51(2020), 1 vom: 20. Aug., Seite 527-548 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:51 year:2020 number:1 day:20 month:08 pages:527-548 https://doi.org/10.1007/s10489-020-01819-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 51 2020 1 20 08 527-548 |
allfieldsSound |
10.1007/s10489-020-01819-9 doi (DE-627)OLC2122314966 (DE-He213)s10489-020-01819-9-p DE-627 ger DE-627 rakwb eng 004 VZ Van Kien, Cao verfasserin aut Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system Anh, Ho Pham Huy (orcid)0000-0001-7353-8205 aut Son, Nguyen Ngoc aut Enthalten in Applied intelligence Springer US, 1991 51(2020), 1 vom: 20. Aug., Seite 527-548 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:51 year:2020 number:1 day:20 month:08 pages:527-548 https://doi.org/10.1007/s10489-020-01819-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 51 2020 1 20 08 527-548 |
language |
English |
source |
Enthalten in Applied intelligence 51(2020), 1 vom: 20. Aug., Seite 527-548 volume:51 year:2020 number:1 day:20 month:08 pages:527-548 |
sourceStr |
Enthalten in Applied intelligence 51(2020), 1 vom: 20. Aug., Seite 527-548 volume:51 year:2020 number:1 day:20 month:08 pages:527-548 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied intelligence |
authorswithroles_txt_mv |
Van Kien, Cao @@aut@@ Anh, Ho Pham Huy @@aut@@ Son, Nguyen Ngoc @@aut@@ |
publishDateDaySort_date |
2020-08-20T00:00:00Z |
hierarchy_top_id |
130990515 |
dewey-sort |
14 |
id |
OLC2122314966 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2122314966</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505062241.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-020-01819-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2122314966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-020-01819-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Kien, Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive inverse multilayer T-S fuzzy controller (AIMFC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid adaptive optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential evolution (DE) algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stability principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spring-mass-damper (SMD) benchmark system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled-liquid tank system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anh, Ho Pham Huy</subfield><subfield code="0">(orcid)0000-0001-7353-8205</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Son, Nguyen Ngoc</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">51(2020), 1 vom: 20. Aug., Seite 527-548</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:527-548</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-020-01819-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">08</subfield><subfield code="h">527-548</subfield></datafield></record></collection>
|
author |
Van Kien, Cao |
spellingShingle |
Van Kien, Cao ddc 004 misc Adaptive inverse multilayer T-S fuzzy controller (AIMFC) misc Uncertain nonlinear system misc Hybrid adaptive optimal control misc Differential evolution (DE) algorithm misc Lyapunov stability principle misc Spring-mass-damper (SMD) benchmark system misc Coupled-liquid tank system Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
authorStr |
Van Kien, Cao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130990515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-669X |
topic_title |
004 VZ Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm Adaptive inverse multilayer T-S fuzzy controller (AIMFC) Uncertain nonlinear system Hybrid adaptive optimal control Differential evolution (DE) algorithm Lyapunov stability principle Spring-mass-damper (SMD) benchmark system Coupled-liquid tank system |
topic |
ddc 004 misc Adaptive inverse multilayer T-S fuzzy controller (AIMFC) misc Uncertain nonlinear system misc Hybrid adaptive optimal control misc Differential evolution (DE) algorithm misc Lyapunov stability principle misc Spring-mass-damper (SMD) benchmark system misc Coupled-liquid tank system |
topic_unstemmed |
ddc 004 misc Adaptive inverse multilayer T-S fuzzy controller (AIMFC) misc Uncertain nonlinear system misc Hybrid adaptive optimal control misc Differential evolution (DE) algorithm misc Lyapunov stability principle misc Spring-mass-damper (SMD) benchmark system misc Coupled-liquid tank system |
topic_browse |
ddc 004 misc Adaptive inverse multilayer T-S fuzzy controller (AIMFC) misc Uncertain nonlinear system misc Hybrid adaptive optimal control misc Differential evolution (DE) algorithm misc Lyapunov stability principle misc Spring-mass-damper (SMD) benchmark system misc Coupled-liquid tank system |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied intelligence |
hierarchy_parent_id |
130990515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 |
title |
Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
ctrlnum |
(DE-627)OLC2122314966 (DE-He213)s10489-020-01819-9-p |
title_full |
Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
author_sort |
Van Kien, Cao |
journal |
Applied intelligence |
journalStr |
Applied intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
527 |
author_browse |
Van Kien, Cao Anh, Ho Pham Huy Son, Nguyen Ngoc |
container_volume |
51 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Van Kien, Cao |
doi_str_mv |
10.1007/s10489-020-01819-9 |
normlink |
(ORCID)0000-0001-7353-8205 |
normlink_prefix_str_mv |
(orcid)0000-0001-7353-8205 |
dewey-full |
004 |
title_sort |
adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
title_auth |
Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
abstract |
Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
1 |
title_short |
Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm |
url |
https://doi.org/10.1007/s10489-020-01819-9 |
remote_bool |
false |
author2 |
Anh, Ho Pham Huy Son, Nguyen Ngoc |
author2Str |
Anh, Ho Pham Huy Son, Nguyen Ngoc |
ppnlink |
130990515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10489-020-01819-9 |
up_date |
2024-07-04T09:45:23.343Z |
_version_ |
1803641236589903872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2122314966</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505062241.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-020-01819-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2122314966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-020-01819-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Kien, Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper introduces a novel adaptive inverse multilayer T-S fuzzy controller (AIMFC) optimally identified with an optimization soft computing algorithm available for a class of robust control applied in uncertain nonlinear SISO systems. The parameters of multilayer T-S fuzzy model are optimally identified by the differential evolution (DE) algorithm to create offline the inverse nonlinear plant with uncertain coefficients. Then, the adaptive fuzzy-based sliding mode surface is applied to ensure that the closed-loop system is asymptotically stable in which the stability is satisfied using Lyapunov stability concept. The control quality of the proposed AIMFC algorithm is compared with the three recent advanced control algorithms applied in the Spring-Mass-Damper (SMD) benchmark system. Simulation and experiment results with different control parameters show that the proposed algorithm is better than the inverse fuzzy controller and the conventional adaptive fuzzy controller comparatively applied in both SMD system and the coupled-liquid tank system with the performance index using the least mean squares (LMS) error, which is investigated to demonstrate the efficiency and the robustness of the proposed AIMFC control approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive inverse multilayer T-S fuzzy controller (AIMFC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertain nonlinear system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid adaptive optimal control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential evolution (DE) algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov stability principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spring-mass-damper (SMD) benchmark system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled-liquid tank system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anh, Ho Pham Huy</subfield><subfield code="0">(orcid)0000-0001-7353-8205</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Son, Nguyen Ngoc</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">51(2020), 1 vom: 20. Aug., Seite 527-548</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:527-548</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-020-01819-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">08</subfield><subfield code="h">527-548</subfield></datafield></record></collection>
|
score |
7.40049 |