Low-rank parity-check codes over Galois rings
Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain fi...
Ausführliche Beschreibung
Autor*in: |
Renner, Julian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Springer US, 1991, 89(2020), 2 vom: 13. Dez., Seite 351-386 |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2020 ; number:2 ; day:13 ; month:12 ; pages:351-386 |
Links: |
---|
DOI / URN: |
10.1007/s10623-020-00825-9 |
---|
Katalog-ID: |
OLC2123459984 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2123459984 | ||
003 | DE-627 | ||
005 | 20230505073533.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10623-020-00825-9 |2 doi | |
035 | |a (DE-627)OLC2123459984 | ||
035 | |a (DE-He213)s10623-020-00825-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Renner, Julian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low-rank parity-check codes over Galois rings |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2020 | ||
520 | |a Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. | ||
650 | 4 | |a Galois rings | |
650 | 4 | |a Low-rank parity-check codes | |
650 | 4 | |a Rank-metric codes | |
650 | 4 | |a Algebraic coding theory | |
700 | 1 | |a Neri, Alessandro |0 (orcid)0000-0002-2020-1040 |4 aut | |
700 | 1 | |a Puchinger, Sven |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Springer US, 1991 |g 89(2020), 2 vom: 13. Dez., Seite 351-386 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:89 |g year:2020 |g number:2 |g day:13 |g month:12 |g pages:351-386 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10623-020-00825-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 89 |j 2020 |e 2 |b 13 |c 12 |h 351-386 |
author_variant |
j r jr a n an s p sp |
---|---|
matchkey_str |
article:09251022:2020----::ornprtcekoeoe |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10623-020-00825-9 doi (DE-627)OLC2123459984 (DE-He213)s10623-020-00825-9-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Renner, Julian verfasserin aut Low-rank parity-check codes over Galois rings 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory Neri, Alessandro (orcid)0000-0002-2020-1040 aut Puchinger, Sven aut Enthalten in Designs, codes and cryptography Springer US, 1991 89(2020), 2 vom: 13. Dez., Seite 351-386 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:89 year:2020 number:2 day:13 month:12 pages:351-386 https://doi.org/10.1007/s10623-020-00825-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 89 2020 2 13 12 351-386 |
spelling |
10.1007/s10623-020-00825-9 doi (DE-627)OLC2123459984 (DE-He213)s10623-020-00825-9-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Renner, Julian verfasserin aut Low-rank parity-check codes over Galois rings 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory Neri, Alessandro (orcid)0000-0002-2020-1040 aut Puchinger, Sven aut Enthalten in Designs, codes and cryptography Springer US, 1991 89(2020), 2 vom: 13. Dez., Seite 351-386 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:89 year:2020 number:2 day:13 month:12 pages:351-386 https://doi.org/10.1007/s10623-020-00825-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 89 2020 2 13 12 351-386 |
allfields_unstemmed |
10.1007/s10623-020-00825-9 doi (DE-627)OLC2123459984 (DE-He213)s10623-020-00825-9-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Renner, Julian verfasserin aut Low-rank parity-check codes over Galois rings 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory Neri, Alessandro (orcid)0000-0002-2020-1040 aut Puchinger, Sven aut Enthalten in Designs, codes and cryptography Springer US, 1991 89(2020), 2 vom: 13. Dez., Seite 351-386 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:89 year:2020 number:2 day:13 month:12 pages:351-386 https://doi.org/10.1007/s10623-020-00825-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 89 2020 2 13 12 351-386 |
allfieldsGer |
10.1007/s10623-020-00825-9 doi (DE-627)OLC2123459984 (DE-He213)s10623-020-00825-9-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Renner, Julian verfasserin aut Low-rank parity-check codes over Galois rings 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory Neri, Alessandro (orcid)0000-0002-2020-1040 aut Puchinger, Sven aut Enthalten in Designs, codes and cryptography Springer US, 1991 89(2020), 2 vom: 13. Dez., Seite 351-386 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:89 year:2020 number:2 day:13 month:12 pages:351-386 https://doi.org/10.1007/s10623-020-00825-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 89 2020 2 13 12 351-386 |
allfieldsSound |
10.1007/s10623-020-00825-9 doi (DE-627)OLC2123459984 (DE-He213)s10623-020-00825-9-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Renner, Julian verfasserin aut Low-rank parity-check codes over Galois rings 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory Neri, Alessandro (orcid)0000-0002-2020-1040 aut Puchinger, Sven aut Enthalten in Designs, codes and cryptography Springer US, 1991 89(2020), 2 vom: 13. Dez., Seite 351-386 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:89 year:2020 number:2 day:13 month:12 pages:351-386 https://doi.org/10.1007/s10623-020-00825-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 89 2020 2 13 12 351-386 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 89(2020), 2 vom: 13. Dez., Seite 351-386 volume:89 year:2020 number:2 day:13 month:12 pages:351-386 |
sourceStr |
Enthalten in Designs, codes and cryptography 89(2020), 2 vom: 13. Dez., Seite 351-386 volume:89 year:2020 number:2 day:13 month:12 pages:351-386 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Renner, Julian @@aut@@ Neri, Alessandro @@aut@@ Puchinger, Sven @@aut@@ |
publishDateDaySort_date |
2020-12-13T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2123459984 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123459984</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505073533.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-020-00825-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123459984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-020-00825-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Renner, Julian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-rank parity-check codes over Galois rings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-rank parity-check codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rank-metric codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic coding theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neri, Alessandro</subfield><subfield code="0">(orcid)0000-0002-2020-1040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puchinger, Sven</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">89(2020), 2 vom: 13. Dez., Seite 351-386</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:351-386</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-020-00825-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield><subfield code="h">351-386</subfield></datafield></record></collection>
|
author |
Renner, Julian |
spellingShingle |
Renner, Julian ddc 004 ssgn 17,1 misc Galois rings misc Low-rank parity-check codes misc Rank-metric codes misc Algebraic coding theory Low-rank parity-check codes over Galois rings |
authorStr |
Renner, Julian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn Low-rank parity-check codes over Galois rings Galois rings Low-rank parity-check codes Rank-metric codes Algebraic coding theory |
topic |
ddc 004 ssgn 17,1 misc Galois rings misc Low-rank parity-check codes misc Rank-metric codes misc Algebraic coding theory |
topic_unstemmed |
ddc 004 ssgn 17,1 misc Galois rings misc Low-rank parity-check codes misc Rank-metric codes misc Algebraic coding theory |
topic_browse |
ddc 004 ssgn 17,1 misc Galois rings misc Low-rank parity-check codes misc Rank-metric codes misc Algebraic coding theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
Low-rank parity-check codes over Galois rings |
ctrlnum |
(DE-627)OLC2123459984 (DE-He213)s10623-020-00825-9-p |
title_full |
Low-rank parity-check codes over Galois rings |
author_sort |
Renner, Julian |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
351 |
author_browse |
Renner, Julian Neri, Alessandro Puchinger, Sven |
container_volume |
89 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Renner, Julian |
doi_str_mv |
10.1007/s10623-020-00825-9 |
normlink |
(ORCID)0000-0002-2020-1040 |
normlink_prefix_str_mv |
(orcid)0000-0002-2020-1040 |
dewey-full |
004 |
title_sort |
low-rank parity-check codes over galois rings |
title_auth |
Low-rank parity-check codes over Galois rings |
abstract |
Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. © The Author(s) 2020 |
abstractGer |
Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. © The Author(s) 2020 |
abstract_unstemmed |
Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above. © The Author(s) 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
2 |
title_short |
Low-rank parity-check codes over Galois rings |
url |
https://doi.org/10.1007/s10623-020-00825-9 |
remote_bool |
false |
author2 |
Neri, Alessandro Puchinger, Sven |
author2Str |
Neri, Alessandro Puchinger, Sven |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10623-020-00825-9 |
up_date |
2024-07-03T18:18:00.453Z |
_version_ |
1803582890790879232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123459984</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505073533.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-020-00825-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123459984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-020-00825-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Renner, Julian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-rank parity-check codes over Galois rings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Low-rank parity-check (LRPC) codes are rank-metric codes over finite fields, which have been proposed by Gaborit et al. (Proceedings of the workshop on coding and cryptography WCC, vol 2013, 2013) for cryptographic applications. Inspired by a recent adaption of Gabidulin codes to certain finite rings by Kamche et al. (IEEE Trans Inf Theory 65(12):7718–7735, 2019), we define and study LRPC codes over Galois rings—a wide class of finite commutative rings. We give a decoding algorithm similar to Gaborit et al.’s decoder, based on simple linear-algebraic operations. We derive an upper bound on the failure probability of the decoder, which is significantly more involved than in the case of finite fields. The bound depends only on the rank of an error, i.e., is independent of its free rank. Further, we analyze the complexity of the decoder. We obtain that there is a class of LRPC codes over a Galois ring that can decode roughly the same number of errors as a Gabidulin code with the same code parameters, but faster than the currently best decoder for Gabidulin codes. However, the price that one needs to pay is a small failure probability, which we can bound from above.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Galois rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-rank parity-check codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rank-metric codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic coding theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neri, Alessandro</subfield><subfield code="0">(orcid)0000-0002-2020-1040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puchinger, Sven</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">89(2020), 2 vom: 13. Dez., Seite 351-386</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:351-386</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-020-00825-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield><subfield code="h">351-386</subfield></datafield></record></collection>
|
score |
7.4017506 |