Length-dependent melting behavior of Sn nanowires
Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial...
Ausführliche Beschreibung
Autor*in: |
Yin, Qiyue [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Systematik: |
|
---|
Anmerkung: |
© The Materials Research Society 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials research - Springer International Publishing, 1986, 32(2017), 6 vom: 21. Feb., Seite 1194-1202 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2017 ; number:6 ; day:21 ; month:02 ; pages:1194-1202 |
Links: |
---|
DOI / URN: |
10.1557/jmr.2017.45 |
---|
Katalog-ID: |
OLC2123769908 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2123769908 | ||
003 | DE-627 | ||
005 | 20230505080305.0 | ||
007 | tu | ||
008 | 230505s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1557/jmr.2017.45 |2 doi | |
035 | |a (DE-627)OLC2123769908 | ||
035 | |a (DE-He213)jmr.2017.45-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a VA 5350 |q VZ |2 rvk | ||
100 | 1 | |a Yin, Qiyue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Length-dependent melting behavior of Sn nanowires |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Materials Research Society 2017 | ||
520 | |a Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. | ||
700 | 1 | |a Gao, Fan |4 aut | |
700 | 1 | |a Wang, Jirui |4 aut | |
700 | 1 | |a Gu, Zhiyong |4 aut | |
700 | 1 | |a Stach, Eric A. |4 aut | |
700 | 1 | |a Zhou, Guangwen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials research |d Springer International Publishing, 1986 |g 32(2017), 6 vom: 21. Feb., Seite 1194-1202 |w (DE-627)129206288 |w (DE-600)54876-5 |w (DE-576)01445744X |x 0884-2914 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2017 |g number:6 |g day:21 |g month:02 |g pages:1194-1202 |
856 | 4 | 1 | |u https://doi.org/10.1557/jmr.2017.45 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a VA 5350 |
951 | |a AR | ||
952 | |d 32 |j 2017 |e 6 |b 21 |c 02 |h 1194-1202 |
author_variant |
q y qy f g fg j w jw z g zg e a s ea eas g z gz |
---|---|
matchkey_str |
article:08842914:2017----::egheednmligeair |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1557/jmr.2017.45 doi (DE-627)OLC2123769908 (DE-He213)jmr.2017.45-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Yin, Qiyue verfasserin aut Length-dependent melting behavior of Sn nanowires 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2017 Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. Gao, Fan aut Wang, Jirui aut Gu, Zhiyong aut Stach, Eric A. aut Zhou, Guangwen aut Enthalten in Journal of materials research Springer International Publishing, 1986 32(2017), 6 vom: 21. Feb., Seite 1194-1202 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 https://doi.org/10.1557/jmr.2017.45 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 32 2017 6 21 02 1194-1202 |
spelling |
10.1557/jmr.2017.45 doi (DE-627)OLC2123769908 (DE-He213)jmr.2017.45-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Yin, Qiyue verfasserin aut Length-dependent melting behavior of Sn nanowires 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2017 Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. Gao, Fan aut Wang, Jirui aut Gu, Zhiyong aut Stach, Eric A. aut Zhou, Guangwen aut Enthalten in Journal of materials research Springer International Publishing, 1986 32(2017), 6 vom: 21. Feb., Seite 1194-1202 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 https://doi.org/10.1557/jmr.2017.45 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 32 2017 6 21 02 1194-1202 |
allfields_unstemmed |
10.1557/jmr.2017.45 doi (DE-627)OLC2123769908 (DE-He213)jmr.2017.45-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Yin, Qiyue verfasserin aut Length-dependent melting behavior of Sn nanowires 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2017 Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. Gao, Fan aut Wang, Jirui aut Gu, Zhiyong aut Stach, Eric A. aut Zhou, Guangwen aut Enthalten in Journal of materials research Springer International Publishing, 1986 32(2017), 6 vom: 21. Feb., Seite 1194-1202 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 https://doi.org/10.1557/jmr.2017.45 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 32 2017 6 21 02 1194-1202 |
allfieldsGer |
10.1557/jmr.2017.45 doi (DE-627)OLC2123769908 (DE-He213)jmr.2017.45-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Yin, Qiyue verfasserin aut Length-dependent melting behavior of Sn nanowires 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2017 Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. Gao, Fan aut Wang, Jirui aut Gu, Zhiyong aut Stach, Eric A. aut Zhou, Guangwen aut Enthalten in Journal of materials research Springer International Publishing, 1986 32(2017), 6 vom: 21. Feb., Seite 1194-1202 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 https://doi.org/10.1557/jmr.2017.45 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 32 2017 6 21 02 1194-1202 |
allfieldsSound |
10.1557/jmr.2017.45 doi (DE-627)OLC2123769908 (DE-He213)jmr.2017.45-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Yin, Qiyue verfasserin aut Length-dependent melting behavior of Sn nanowires 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Materials Research Society 2017 Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. Gao, Fan aut Wang, Jirui aut Gu, Zhiyong aut Stach, Eric A. aut Zhou, Guangwen aut Enthalten in Journal of materials research Springer International Publishing, 1986 32(2017), 6 vom: 21. Feb., Seite 1194-1202 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 https://doi.org/10.1557/jmr.2017.45 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 VA 5350 AR 32 2017 6 21 02 1194-1202 |
language |
English |
source |
Enthalten in Journal of materials research 32(2017), 6 vom: 21. Feb., Seite 1194-1202 volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 |
sourceStr |
Enthalten in Journal of materials research 32(2017), 6 vom: 21. Feb., Seite 1194-1202 volume:32 year:2017 number:6 day:21 month:02 pages:1194-1202 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials research |
authorswithroles_txt_mv |
Yin, Qiyue @@aut@@ Gao, Fan @@aut@@ Wang, Jirui @@aut@@ Gu, Zhiyong @@aut@@ Stach, Eric A. @@aut@@ Zhou, Guangwen @@aut@@ |
publishDateDaySort_date |
2017-02-21T00:00:00Z |
hierarchy_top_id |
129206288 |
dewey-sort |
3670 |
id |
OLC2123769908 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123769908</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505080305.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/jmr.2017.45</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123769908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)jmr.2017.45-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Qiyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Length-dependent melting behavior of Sn nanowires</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Fan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jirui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Zhiyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stach, Eric A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Guangwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">32(2017), 6 vom: 21. Feb., Seite 1194-1202</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1194-1202</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/jmr.2017.45</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">1194-1202</subfield></datafield></record></collection>
|
author |
Yin, Qiyue |
spellingShingle |
Yin, Qiyue ddc 670 rvk VA 5350 Length-dependent melting behavior of Sn nanowires |
authorStr |
Yin, Qiyue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206288 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0884-2914 |
topic_title |
670 VZ VA 5350 VZ rvk Length-dependent melting behavior of Sn nanowires |
topic |
ddc 670 rvk VA 5350 |
topic_unstemmed |
ddc 670 rvk VA 5350 |
topic_browse |
ddc 670 rvk VA 5350 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials research |
hierarchy_parent_id |
129206288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X |
title |
Length-dependent melting behavior of Sn nanowires |
ctrlnum |
(DE-627)OLC2123769908 (DE-He213)jmr.2017.45-p |
title_full |
Length-dependent melting behavior of Sn nanowires |
author_sort |
Yin, Qiyue |
journal |
Journal of materials research |
journalStr |
Journal of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1194 |
author_browse |
Yin, Qiyue Gao, Fan Wang, Jirui Gu, Zhiyong Stach, Eric A. Zhou, Guangwen |
container_volume |
32 |
class |
670 VZ VA 5350 VZ rvk |
format_se |
Aufsätze |
author-letter |
Yin, Qiyue |
doi_str_mv |
10.1557/jmr.2017.45 |
dewey-full |
670 |
title_sort |
length-dependent melting behavior of sn nanowires |
title_auth |
Length-dependent melting behavior of Sn nanowires |
abstract |
Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. © The Materials Research Society 2017 |
abstractGer |
Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. © The Materials Research Society 2017 |
abstract_unstemmed |
Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires. © The Materials Research Society 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_21 GBV_ILN_24 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_4126 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
6 |
title_short |
Length-dependent melting behavior of Sn nanowires |
url |
https://doi.org/10.1557/jmr.2017.45 |
remote_bool |
false |
author2 |
Gao, Fan Wang, Jirui Gu, Zhiyong Stach, Eric A. Zhou, Guangwen |
author2Str |
Gao, Fan Wang, Jirui Gu, Zhiyong Stach, Eric A. Zhou, Guangwen |
ppnlink |
129206288 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/jmr.2017.45 |
up_date |
2024-07-03T19:59:54.131Z |
_version_ |
1803589301444804608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123769908</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505080305.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/jmr.2017.45</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123769908</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)jmr.2017.45-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Qiyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Length-dependent melting behavior of Sn nanowires</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Materials Research Society 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using in situ transmission electron microscopy, we report the observation of the melting behavior of one-dimensional nanostructures of Sn with different length/width aspect ratios. The melting of small aspect-ratio nanowires (nanorods) results in the expansion of liquid Sn along both axial and radial directions with the tendency to form an isometric or spherical particle, thereby minimizing the total surface area. For nanowires with the length/width aspect ratio of ∼10.5, perturbation along the liquid stream causes an unstable necking phenomenon and the whole wire tends to shrink into a spherical particle. In contrast, Rayleigh instability sets in for the melting of the nanowires with the length/width aspect ratio as large as ∼21, which gives rise to necking and fragmentation of the wire into particles. The amorphous native surface oxide ($ SnO_{x} $) layer serves as a confinement tube and plays an important role in the melting induced morphological evolution of Sn nanowires. A thin $ SnO_{x} $ layer is flexible with the ability to shrink or expand upon the flow of molten Sn. The increased rigidity for a thick $ SnO_{x} $ surface layer kinetically suppresses bulging and necking formation in molten Sn nanowires.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Fan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jirui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Zhiyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stach, Eric A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Guangwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">32(2017), 6 vom: 21. Feb., Seite 1194-1202</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">day:21</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1194-1202</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/jmr.2017.45</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="b">21</subfield><subfield code="c">02</subfield><subfield code="h">1194-1202</subfield></datafield></record></collection>
|
score |
7.402011 |