Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices
Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation...
Ausführliche Beschreibung
Autor*in: |
Guo, Kai [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geodesy - Springer Berlin Heidelberg, 1995, 95(2021), 3 vom: 22. Feb. |
---|---|
Übergeordnetes Werk: |
volume:95 ; year:2021 ; number:3 ; day:22 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s00190-021-01475-y |
---|
Katalog-ID: |
OLC2123873837 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2123873837 | ||
003 | DE-627 | ||
005 | 20230505090404.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00190-021-01475-y |2 doi | |
035 | |a (DE-627)OLC2123873837 | ||
035 | |a (DE-He213)s00190-021-01475-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
100 | 1 | |a Guo, Kai |e verfasserin |0 (orcid)0000-0002-4997-0345 |4 aut | |
245 | 1 | 0 | |a Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. | ||
650 | 4 | |a GNSS | |
650 | 4 | |a Ionospheric scintillation | |
650 | 4 | |a Scintillation index | |
650 | 4 | |a PPP | |
650 | 4 | |a Scintillation mitigation | |
700 | 1 | |a Vadakke Veettil, Sreeja |0 (orcid)0000-0003-3791-8096 |4 aut | |
700 | 1 | |a Weaver, Brian Jerald |0 (orcid)0000-0001-5234-9739 |4 aut | |
700 | 1 | |a Aquino, Marcio |0 (orcid)0000-0003-2733-4716 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of geodesy |d Springer Berlin Heidelberg, 1995 |g 95(2021), 3 vom: 22. Feb. |w (DE-627)191686298 |w (DE-600)1302972-1 |w (DE-576)051377373 |x 0949-7714 |7 nnns |
773 | 1 | 8 | |g volume:95 |g year:2021 |g number:3 |g day:22 |g month:02 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00190-021-01475-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 95 |j 2021 |e 3 |b 22 |c 02 |
author_variant |
k g kg v s v vs vsv b j w bj bjw m a ma |
---|---|
matchkey_str |
article:09497714:2021----::iiaigihaiueoopeisitlainfetogspeieonpstoigx |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00190-021-01475-y doi (DE-627)OLC2123873837 (DE-He213)s00190-021-01475-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Guo, Kai verfasserin (orcid)0000-0002-4997-0345 aut Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation Vadakke Veettil, Sreeja (orcid)0000-0003-3791-8096 aut Weaver, Brian Jerald (orcid)0000-0001-5234-9739 aut Aquino, Marcio (orcid)0000-0003-2733-4716 aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 95(2021), 3 vom: 22. Feb. (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:95 year:2021 number:3 day:22 month:02 https://doi.org/10.1007/s00190-021-01475-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_2018 GBV_ILN_4277 AR 95 2021 3 22 02 |
spelling |
10.1007/s00190-021-01475-y doi (DE-627)OLC2123873837 (DE-He213)s00190-021-01475-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Guo, Kai verfasserin (orcid)0000-0002-4997-0345 aut Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation Vadakke Veettil, Sreeja (orcid)0000-0003-3791-8096 aut Weaver, Brian Jerald (orcid)0000-0001-5234-9739 aut Aquino, Marcio (orcid)0000-0003-2733-4716 aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 95(2021), 3 vom: 22. Feb. (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:95 year:2021 number:3 day:22 month:02 https://doi.org/10.1007/s00190-021-01475-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_2018 GBV_ILN_4277 AR 95 2021 3 22 02 |
allfields_unstemmed |
10.1007/s00190-021-01475-y doi (DE-627)OLC2123873837 (DE-He213)s00190-021-01475-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Guo, Kai verfasserin (orcid)0000-0002-4997-0345 aut Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation Vadakke Veettil, Sreeja (orcid)0000-0003-3791-8096 aut Weaver, Brian Jerald (orcid)0000-0001-5234-9739 aut Aquino, Marcio (orcid)0000-0003-2733-4716 aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 95(2021), 3 vom: 22. Feb. (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:95 year:2021 number:3 day:22 month:02 https://doi.org/10.1007/s00190-021-01475-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_2018 GBV_ILN_4277 AR 95 2021 3 22 02 |
allfieldsGer |
10.1007/s00190-021-01475-y doi (DE-627)OLC2123873837 (DE-He213)s00190-021-01475-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Guo, Kai verfasserin (orcid)0000-0002-4997-0345 aut Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation Vadakke Veettil, Sreeja (orcid)0000-0003-3791-8096 aut Weaver, Brian Jerald (orcid)0000-0001-5234-9739 aut Aquino, Marcio (orcid)0000-0003-2733-4716 aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 95(2021), 3 vom: 22. Feb. (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:95 year:2021 number:3 day:22 month:02 https://doi.org/10.1007/s00190-021-01475-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_2018 GBV_ILN_4277 AR 95 2021 3 22 02 |
allfieldsSound |
10.1007/s00190-021-01475-y doi (DE-627)OLC2123873837 (DE-He213)s00190-021-01475-y-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn Guo, Kai verfasserin (orcid)0000-0002-4997-0345 aut Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation Vadakke Veettil, Sreeja (orcid)0000-0003-3791-8096 aut Weaver, Brian Jerald (orcid)0000-0001-5234-9739 aut Aquino, Marcio (orcid)0000-0003-2733-4716 aut Enthalten in Journal of geodesy Springer Berlin Heidelberg, 1995 95(2021), 3 vom: 22. Feb. (DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 0949-7714 nnns volume:95 year:2021 number:3 day:22 month:02 https://doi.org/10.1007/s00190-021-01475-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_2018 GBV_ILN_4277 AR 95 2021 3 22 02 |
language |
English |
source |
Enthalten in Journal of geodesy 95(2021), 3 vom: 22. Feb. volume:95 year:2021 number:3 day:22 month:02 |
sourceStr |
Enthalten in Journal of geodesy 95(2021), 3 vom: 22. Feb. volume:95 year:2021 number:3 day:22 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geodesy |
authorswithroles_txt_mv |
Guo, Kai @@aut@@ Vadakke Veettil, Sreeja @@aut@@ Weaver, Brian Jerald @@aut@@ Aquino, Marcio @@aut@@ |
publishDateDaySort_date |
2021-02-22T00:00:00Z |
hierarchy_top_id |
191686298 |
dewey-sort |
3550 |
id |
OLC2123873837 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123873837</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505090404.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00190-021-01475-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123873837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00190-021-01475-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4997-0345</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GNSS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PPP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillation mitigation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vadakke Veettil, Sreeja</subfield><subfield code="0">(orcid)0000-0003-3791-8096</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weaver, Brian Jerald</subfield><subfield code="0">(orcid)0000-0001-5234-9739</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aquino, Marcio</subfield><subfield code="0">(orcid)0000-0003-2733-4716</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geodesy</subfield><subfield code="d">Springer Berlin Heidelberg, 1995</subfield><subfield code="g">95(2021), 3 vom: 22. Feb.</subfield><subfield code="w">(DE-627)191686298</subfield><subfield code="w">(DE-600)1302972-1</subfield><subfield code="w">(DE-576)051377373</subfield><subfield code="x">0949-7714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00190-021-01475-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Guo, Kai |
spellingShingle |
Guo, Kai ddc 550 ssgn 14 misc GNSS misc Ionospheric scintillation misc Scintillation index misc PPP misc Scintillation mitigation Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices |
authorStr |
Guo, Kai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)191686298 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0949-7714 |
topic_title |
550 VZ 14 ssgn Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices GNSS Ionospheric scintillation Scintillation index PPP Scintillation mitigation |
topic |
ddc 550 ssgn 14 misc GNSS misc Ionospheric scintillation misc Scintillation index misc PPP misc Scintillation mitigation |
topic_unstemmed |
ddc 550 ssgn 14 misc GNSS misc Ionospheric scintillation misc Scintillation index misc PPP misc Scintillation mitigation |
topic_browse |
ddc 550 ssgn 14 misc GNSS misc Ionospheric scintillation misc Scintillation index misc PPP misc Scintillation mitigation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of geodesy |
hierarchy_parent_id |
191686298 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geodesy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)191686298 (DE-600)1302972-1 (DE-576)051377373 |
title |
Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices |
ctrlnum |
(DE-627)OLC2123873837 (DE-He213)s00190-021-01475-y-p |
title_full |
Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices |
author_sort |
Guo, Kai |
journal |
Journal of geodesy |
journalStr |
Journal of geodesy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Guo, Kai Vadakke Veettil, Sreeja Weaver, Brian Jerald Aquino, Marcio |
container_volume |
95 |
class |
550 VZ 14 ssgn |
format_se |
Aufsätze |
author-letter |
Guo, Kai |
doi_str_mv |
10.1007/s00190-021-01475-y |
normlink |
(ORCID)0000-0002-4997-0345 (ORCID)0000-0003-3791-8096 (ORCID)0000-0001-5234-9739 (ORCID)0000-0003-2733-4716 |
normlink_prefix_str_mv |
(orcid)0000-0002-4997-0345 (orcid)0000-0003-3791-8096 (orcid)0000-0001-5234-9739 (orcid)0000-0003-2733-4716 |
dewey-full |
550 |
title_sort |
mitigating high latitude ionospheric scintillation effects on gnss precise point positioning exploiting 1-s scintillation indices |
title_auth |
Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices |
abstract |
Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. © The Author(s) 2021 |
abstractGer |
Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. © The Author(s) 2021 |
abstract_unstemmed |
Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices |
url |
https://doi.org/10.1007/s00190-021-01475-y |
remote_bool |
false |
author2 |
Vadakke Veettil, Sreeja Weaver, Brian Jerald Aquino, Marcio |
author2Str |
Vadakke Veettil, Sreeja Weaver, Brian Jerald Aquino, Marcio |
ppnlink |
191686298 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00190-021-01475-y |
up_date |
2024-07-03T20:33:44.773Z |
_version_ |
1803591430726221824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123873837</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505090404.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00190-021-01475-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123873837</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00190-021-01475-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4997-0345</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mitigating high latitude ionospheric scintillation effects on GNSS Precise Point Positioning exploiting 1-s scintillation indices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ionospheric scintillation refers to rapid and random fluctuations in radio frequency signal intensity and phase, which occurs more frequently and severely at high latitudes under strong solar and geomagnetic activity. As one of the most challenging error sources affecting Global Navigation Satellite System (GNSS), scintillation can significantly degrade the performance of GNSS receivers, thereby leading to increased positioning errors. This study analyzes Global Positioning System (GPS) scintillation data recorded by two ionospheric scintillation monitoring receivers operational, respectively, in the Arctic and northern Canada during a geomagnetic storm in 2019. A novel approach is proposed to calculate 1-s scintillation indices. The 1-s receiver tracking error variances are then estimated, which are further used to mitigate the high latitude scintillation effects on GPS Precise Point Positioning. Results show that the 1-s scintillation indices can describe the signal fluctuations under scintillation more accurately. With the mitigation approach, the 3D positioning error is greatly reduced under scintillation analyzed in this study. Additionally, the 1-s tracking error variance achieves a better performance in scintillation mitigation compared with the previous approach which exploits 1-min tracking error variance estimated by the commonly used 1-min scintillation indices. This work is relevant for a better understanding of the high latitude scintillation effects on GNSS and is also beneficial for developing scintillation mitigation tools for GNSS positioning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GNSS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ionospheric scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PPP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scintillation mitigation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vadakke Veettil, Sreeja</subfield><subfield code="0">(orcid)0000-0003-3791-8096</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weaver, Brian Jerald</subfield><subfield code="0">(orcid)0000-0001-5234-9739</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aquino, Marcio</subfield><subfield code="0">(orcid)0000-0003-2733-4716</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geodesy</subfield><subfield code="d">Springer Berlin Heidelberg, 1995</subfield><subfield code="g">95(2021), 3 vom: 22. Feb.</subfield><subfield code="w">(DE-627)191686298</subfield><subfield code="w">(DE-600)1302972-1</subfield><subfield code="w">(DE-576)051377373</subfield><subfield code="x">0949-7714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00190-021-01475-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.401535 |