Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making
Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics...
Ausführliche Beschreibung
Autor*in: |
Li, Cong-Cong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Group decision and negotiation - Springer Netherlands, 1992, 30(2020), 1 vom: 03. Okt., Seite 97-118 |
---|---|
Übergeordnetes Werk: |
volume:30 ; year:2020 ; number:1 ; day:03 ; month:10 ; pages:97-118 |
Links: |
---|
DOI / URN: |
10.1007/s10726-020-09708-9 |
---|
Katalog-ID: |
OLC2123995215 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2123995215 | ||
003 | DE-627 | ||
005 | 20230505082315.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10726-020-09708-9 |2 doi | |
035 | |a (DE-627)OLC2123995215 | ||
035 | |a (DE-He213)s10726-020-09708-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 150 |a 300 |a 650 |q VZ |
084 | |a 5,2 |a 3,4 |a 3,2 |2 ssgn | ||
100 | 1 | |a Li, Cong-Cong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2020 | ||
520 | |a Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. | ||
650 | 4 | |a Linguistic decision making | |
650 | 4 | |a Linguistic distribution | |
650 | 4 | |a Personalized individual semantics | |
650 | 4 | |a Consistency | |
650 | 4 | |a Group decision making | |
700 | 1 | |a Gao, Yuan |4 aut | |
700 | 1 | |a Dong, Yucheng |0 (orcid)0000-0002-7199-4001 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Group decision and negotiation |d Springer Netherlands, 1992 |g 30(2020), 1 vom: 03. Okt., Seite 97-118 |w (DE-627)17112684X |w (DE-600)1155213-X |w (DE-576)040094448 |x 0926-2644 |7 nnns |
773 | 1 | 8 | |g volume:30 |g year:2020 |g number:1 |g day:03 |g month:10 |g pages:97-118 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10726-020-09708-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
951 | |a AR | ||
952 | |d 30 |j 2020 |e 1 |b 03 |c 10 |h 97-118 |
author_variant |
c c l ccl y g yg y d yd |
---|---|
matchkey_str |
article:09262644:2020----::aaiggoaceeetadesnlzdniiuleatcudrnopeeigitcitiu |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10726-020-09708-9 doi (DE-627)OLC2123995215 (DE-He213)s10726-020-09708-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Li, Cong-Cong verfasserin aut Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making Gao, Yuan aut Dong, Yucheng (orcid)0000-0002-7199-4001 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2020), 1 vom: 03. Okt., Seite 97-118 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2020 number:1 day:03 month:10 pages:97-118 https://doi.org/10.1007/s10726-020-09708-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2020 1 03 10 97-118 |
spelling |
10.1007/s10726-020-09708-9 doi (DE-627)OLC2123995215 (DE-He213)s10726-020-09708-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Li, Cong-Cong verfasserin aut Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making Gao, Yuan aut Dong, Yucheng (orcid)0000-0002-7199-4001 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2020), 1 vom: 03. Okt., Seite 97-118 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2020 number:1 day:03 month:10 pages:97-118 https://doi.org/10.1007/s10726-020-09708-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2020 1 03 10 97-118 |
allfields_unstemmed |
10.1007/s10726-020-09708-9 doi (DE-627)OLC2123995215 (DE-He213)s10726-020-09708-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Li, Cong-Cong verfasserin aut Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making Gao, Yuan aut Dong, Yucheng (orcid)0000-0002-7199-4001 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2020), 1 vom: 03. Okt., Seite 97-118 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2020 number:1 day:03 month:10 pages:97-118 https://doi.org/10.1007/s10726-020-09708-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2020 1 03 10 97-118 |
allfieldsGer |
10.1007/s10726-020-09708-9 doi (DE-627)OLC2123995215 (DE-He213)s10726-020-09708-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Li, Cong-Cong verfasserin aut Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making Gao, Yuan aut Dong, Yucheng (orcid)0000-0002-7199-4001 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2020), 1 vom: 03. Okt., Seite 97-118 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2020 number:1 day:03 month:10 pages:97-118 https://doi.org/10.1007/s10726-020-09708-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2020 1 03 10 97-118 |
allfieldsSound |
10.1007/s10726-020-09708-9 doi (DE-627)OLC2123995215 (DE-He213)s10726-020-09708-9-p DE-627 ger DE-627 rakwb eng 150 300 650 VZ 5,2 3,4 3,2 ssgn Li, Cong-Cong verfasserin aut Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2020 Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making Gao, Yuan aut Dong, Yucheng (orcid)0000-0002-7199-4001 aut Enthalten in Group decision and negotiation Springer Netherlands, 1992 30(2020), 1 vom: 03. Okt., Seite 97-118 (DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 0926-2644 nnns volume:30 year:2020 number:1 day:03 month:10 pages:97-118 https://doi.org/10.1007/s10726-020-09708-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW AR 30 2020 1 03 10 97-118 |
language |
English |
source |
Enthalten in Group decision and negotiation 30(2020), 1 vom: 03. Okt., Seite 97-118 volume:30 year:2020 number:1 day:03 month:10 pages:97-118 |
sourceStr |
Enthalten in Group decision and negotiation 30(2020), 1 vom: 03. Okt., Seite 97-118 volume:30 year:2020 number:1 day:03 month:10 pages:97-118 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making |
dewey-raw |
150 |
isfreeaccess_bool |
false |
container_title |
Group decision and negotiation |
authorswithroles_txt_mv |
Li, Cong-Cong @@aut@@ Gao, Yuan @@aut@@ Dong, Yucheng @@aut@@ |
publishDateDaySort_date |
2020-10-03T00:00:00Z |
hierarchy_top_id |
17112684X |
dewey-sort |
3150 |
id |
OLC2123995215 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123995215</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505082315.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10726-020-09708-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123995215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10726-020-09708-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">300</subfield><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,2</subfield><subfield code="a">3,4</subfield><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Cong-Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linguistic decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linguistic distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Personalized individual semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consistency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group decision making</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yucheng</subfield><subfield code="0">(orcid)0000-0002-7199-4001</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Group decision and negotiation</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">30(2020), 1 vom: 03. Okt., Seite 97-118</subfield><subfield code="w">(DE-627)17112684X</subfield><subfield code="w">(DE-600)1155213-X</subfield><subfield code="w">(DE-576)040094448</subfield><subfield code="x">0926-2644</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:97-118</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10726-020-09708-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">10</subfield><subfield code="h">97-118</subfield></datafield></record></collection>
|
author |
Li, Cong-Cong |
spellingShingle |
Li, Cong-Cong ddc 150 ssgn 5,2 misc Linguistic decision making misc Linguistic distribution misc Personalized individual semantics misc Consistency misc Group decision making Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making |
authorStr |
Li, Cong-Cong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)17112684X |
format |
Article |
dewey-ones |
150 - Psychology 300 - Social sciences 650 - Management & auxiliary services |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0926-2644 |
topic_title |
150 300 650 VZ 5,2 3,4 3,2 ssgn Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making Linguistic decision making Linguistic distribution Personalized individual semantics Consistency Group decision making |
topic |
ddc 150 ssgn 5,2 misc Linguistic decision making misc Linguistic distribution misc Personalized individual semantics misc Consistency misc Group decision making |
topic_unstemmed |
ddc 150 ssgn 5,2 misc Linguistic decision making misc Linguistic distribution misc Personalized individual semantics misc Consistency misc Group decision making |
topic_browse |
ddc 150 ssgn 5,2 misc Linguistic decision making misc Linguistic distribution misc Personalized individual semantics misc Consistency misc Group decision making |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Group decision and negotiation |
hierarchy_parent_id |
17112684X |
dewey-tens |
150 - Psychology 300 - Social sciences, sociology & anthropology 650 - Management & public relations |
hierarchy_top_title |
Group decision and negotiation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)17112684X (DE-600)1155213-X (DE-576)040094448 |
title |
Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making |
ctrlnum |
(DE-627)OLC2123995215 (DE-He213)s10726-020-09708-9-p |
title_full |
Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making |
author_sort |
Li, Cong-Cong |
journal |
Group decision and negotiation |
journalStr |
Group decision and negotiation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
100 - Philosophy & psychology 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
97 |
author_browse |
Li, Cong-Cong Gao, Yuan Dong, Yucheng |
container_volume |
30 |
class |
150 300 650 VZ 5,2 3,4 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Li, Cong-Cong |
doi_str_mv |
10.1007/s10726-020-09708-9 |
normlink |
(ORCID)0000-0002-7199-4001 |
normlink_prefix_str_mv |
(orcid)0000-0002-7199-4001 |
dewey-full |
150 300 650 |
title_sort |
managing ignorance elements and personalized individual semantics under incomplete linguistic distribution context in group decision making |
title_auth |
Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making |
abstract |
Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. © Springer Nature B.V. 2020 |
abstractGer |
Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. © Springer Nature B.V. 2020 |
abstract_unstemmed |
Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal. © Springer Nature B.V. 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW |
container_issue |
1 |
title_short |
Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making |
url |
https://doi.org/10.1007/s10726-020-09708-9 |
remote_bool |
false |
author2 |
Gao, Yuan Dong, Yucheng |
author2Str |
Gao, Yuan Dong, Yucheng |
ppnlink |
17112684X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10726-020-09708-9 |
up_date |
2024-07-03T21:14:38.074Z |
_version_ |
1803594003205062656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2123995215</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505082315.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10726-020-09708-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2123995215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10726-020-09708-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">300</subfield><subfield code="a">650</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,2</subfield><subfield code="a">3,4</subfield><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Cong-Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Managing Ignorance Elements and Personalized Individual Semantics Under Incomplete Linguistic Distribution Context in Group Decision Making</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Linguistic distribution expressions provide a flexible way for decision makers to express their opinions in linguistic decision making. When working with a linguistic distribution, words mean different things for different people, i.e., decision makers have personalized individual semantics (PISs) regarding words. Therefore, in this paper, we propose a consistency-driven methodology to manage distribution linguistic preference relations (DLPRs) with PISs. This methodology can not only estimate the ignorance elements in incomplete DLPRs but also obtain the personalized numerical meanings of linguistic expressions to decision makers. In this way, we can combine the characteristics of the personalized representation in linguistic decision making and guarantee the optimum consistency of incomplete DLPRs with ignorance elements. Detailed numerical and comparison analyses have been proposed to justify our proposal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linguistic decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linguistic distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Personalized individual semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consistency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group decision making</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yucheng</subfield><subfield code="0">(orcid)0000-0002-7199-4001</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Group decision and negotiation</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">30(2020), 1 vom: 03. Okt., Seite 97-118</subfield><subfield code="w">(DE-627)17112684X</subfield><subfield code="w">(DE-600)1155213-X</subfield><subfield code="w">(DE-576)040094448</subfield><subfield code="x">0926-2644</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:30</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:97-118</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10726-020-09708-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">30</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">10</subfield><subfield code="h">97-118</subfield></datafield></record></collection>
|
score |
7.401355 |