Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds
Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced igniti...
Ausführliche Beschreibung
Autor*in: |
Suzuki, Sayaka [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Fire technology - Springer US, 1965, 57(2020), 2 vom: 16. Juli, Seite 683-697 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2020 ; number:2 ; day:16 ; month:07 ; pages:683-697 |
Links: |
---|
DOI / URN: |
10.1007/s10694-020-01018-5 |
---|
Katalog-ID: |
OLC2124045784 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2124045784 | ||
003 | DE-627 | ||
005 | 20230505083000.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10694-020-01018-5 |2 doi | |
035 | |a (DE-627)OLC2124045784 | ||
035 | |a (DE-He213)s10694-020-01018-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |a 620 |q VZ |
100 | 1 | |a Suzuki, Sayaka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2020 | ||
520 | |a Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. | ||
650 | 4 | |a Firebrands | |
650 | 4 | |a Ignition | |
650 | 4 | |a Radiation | |
650 | 4 | |a Large outdoor fires | |
650 | 4 | |a WUI fires | |
650 | 4 | |a Urban fires | |
700 | 1 | |a Manzello, Samuel L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fire technology |d Springer US, 1965 |g 57(2020), 2 vom: 16. Juli, Seite 683-697 |w (DE-627)130411485 |w (DE-600)622603-6 |w (DE-576)028033434 |x 0015-2684 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2020 |g number:2 |g day:16 |g month:07 |g pages:683-697 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10694-020-01018-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 57 |j 2020 |e 2 |b 16 |c 07 |h 683-697 |
author_variant |
s s ss s l m sl slm |
---|---|
matchkey_str |
article:00152684:2020----::netgtnculdfetfaitvhafuadiernsoe |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10694-020-01018-5 doi (DE-627)OLC2124045784 (DE-He213)s10694-020-01018-5-p DE-627 ger DE-627 rakwb eng 690 620 VZ Suzuki, Sayaka verfasserin aut Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires Manzello, Samuel L. aut Enthalten in Fire technology Springer US, 1965 57(2020), 2 vom: 16. Juli, Seite 683-697 (DE-627)130411485 (DE-600)622603-6 (DE-576)028033434 0015-2684 nnns volume:57 year:2020 number:2 day:16 month:07 pages:683-697 https://doi.org/10.1007/s10694-020-01018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_2014 AR 57 2020 2 16 07 683-697 |
spelling |
10.1007/s10694-020-01018-5 doi (DE-627)OLC2124045784 (DE-He213)s10694-020-01018-5-p DE-627 ger DE-627 rakwb eng 690 620 VZ Suzuki, Sayaka verfasserin aut Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires Manzello, Samuel L. aut Enthalten in Fire technology Springer US, 1965 57(2020), 2 vom: 16. Juli, Seite 683-697 (DE-627)130411485 (DE-600)622603-6 (DE-576)028033434 0015-2684 nnns volume:57 year:2020 number:2 day:16 month:07 pages:683-697 https://doi.org/10.1007/s10694-020-01018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_2014 AR 57 2020 2 16 07 683-697 |
allfields_unstemmed |
10.1007/s10694-020-01018-5 doi (DE-627)OLC2124045784 (DE-He213)s10694-020-01018-5-p DE-627 ger DE-627 rakwb eng 690 620 VZ Suzuki, Sayaka verfasserin aut Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires Manzello, Samuel L. aut Enthalten in Fire technology Springer US, 1965 57(2020), 2 vom: 16. Juli, Seite 683-697 (DE-627)130411485 (DE-600)622603-6 (DE-576)028033434 0015-2684 nnns volume:57 year:2020 number:2 day:16 month:07 pages:683-697 https://doi.org/10.1007/s10694-020-01018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_2014 AR 57 2020 2 16 07 683-697 |
allfieldsGer |
10.1007/s10694-020-01018-5 doi (DE-627)OLC2124045784 (DE-He213)s10694-020-01018-5-p DE-627 ger DE-627 rakwb eng 690 620 VZ Suzuki, Sayaka verfasserin aut Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires Manzello, Samuel L. aut Enthalten in Fire technology Springer US, 1965 57(2020), 2 vom: 16. Juli, Seite 683-697 (DE-627)130411485 (DE-600)622603-6 (DE-576)028033434 0015-2684 nnns volume:57 year:2020 number:2 day:16 month:07 pages:683-697 https://doi.org/10.1007/s10694-020-01018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_2014 AR 57 2020 2 16 07 683-697 |
allfieldsSound |
10.1007/s10694-020-01018-5 doi (DE-627)OLC2124045784 (DE-He213)s10694-020-01018-5-p DE-627 ger DE-627 rakwb eng 690 620 VZ Suzuki, Sayaka verfasserin aut Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires Manzello, Samuel L. aut Enthalten in Fire technology Springer US, 1965 57(2020), 2 vom: 16. Juli, Seite 683-697 (DE-627)130411485 (DE-600)622603-6 (DE-576)028033434 0015-2684 nnns volume:57 year:2020 number:2 day:16 month:07 pages:683-697 https://doi.org/10.1007/s10694-020-01018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_2014 AR 57 2020 2 16 07 683-697 |
language |
English |
source |
Enthalten in Fire technology 57(2020), 2 vom: 16. Juli, Seite 683-697 volume:57 year:2020 number:2 day:16 month:07 pages:683-697 |
sourceStr |
Enthalten in Fire technology 57(2020), 2 vom: 16. Juli, Seite 683-697 volume:57 year:2020 number:2 day:16 month:07 pages:683-697 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Fire technology |
authorswithroles_txt_mv |
Suzuki, Sayaka @@aut@@ Manzello, Samuel L. @@aut@@ |
publishDateDaySort_date |
2020-07-16T00:00:00Z |
hierarchy_top_id |
130411485 |
dewey-sort |
3690 |
id |
OLC2124045784 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2124045784</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505083000.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10694-020-01018-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124045784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10694-020-01018-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suzuki, Sayaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Firebrands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ignition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large outdoor fires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WUI fires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban fires</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manzello, Samuel L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fire technology</subfield><subfield code="d">Springer US, 1965</subfield><subfield code="g">57(2020), 2 vom: 16. Juli, Seite 683-697</subfield><subfield code="w">(DE-627)130411485</subfield><subfield code="w">(DE-600)622603-6</subfield><subfield code="w">(DE-576)028033434</subfield><subfield code="x">0015-2684</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:683-697</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10694-020-01018-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">07</subfield><subfield code="h">683-697</subfield></datafield></record></collection>
|
author |
Suzuki, Sayaka |
spellingShingle |
Suzuki, Sayaka ddc 690 misc Firebrands misc Ignition misc Radiation misc Large outdoor fires misc WUI fires misc Urban fires Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds |
authorStr |
Suzuki, Sayaka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130411485 |
format |
Article |
dewey-ones |
690 - Buildings 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0015-2684 |
topic_title |
690 620 VZ Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds Firebrands Ignition Radiation Large outdoor fires WUI fires Urban fires |
topic |
ddc 690 misc Firebrands misc Ignition misc Radiation misc Large outdoor fires misc WUI fires misc Urban fires |
topic_unstemmed |
ddc 690 misc Firebrands misc Ignition misc Radiation misc Large outdoor fires misc WUI fires misc Urban fires |
topic_browse |
ddc 690 misc Firebrands misc Ignition misc Radiation misc Large outdoor fires misc WUI fires misc Urban fires |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Fire technology |
hierarchy_parent_id |
130411485 |
dewey-tens |
690 - Building & construction 620 - Engineering |
hierarchy_top_title |
Fire technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130411485 (DE-600)622603-6 (DE-576)028033434 |
title |
Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds |
ctrlnum |
(DE-627)OLC2124045784 (DE-He213)s10694-020-01018-5-p |
title_full |
Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds |
author_sort |
Suzuki, Sayaka |
journal |
Fire technology |
journalStr |
Fire technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
683 |
author_browse |
Suzuki, Sayaka Manzello, Samuel L. |
container_volume |
57 |
class |
690 620 VZ |
format_se |
Aufsätze |
author-letter |
Suzuki, Sayaka |
doi_str_mv |
10.1007/s10694-020-01018-5 |
dewey-full |
690 620 |
title_sort |
investigating coupled effect of radiative heat flux and firebrand showers on ignition of fuel beds |
title_auth |
Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds |
abstract |
Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. © The Author(s) 2020 |
abstractGer |
Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. © The Author(s) 2020 |
abstract_unstemmed |
Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s. © The Author(s) 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_2014 |
container_issue |
2 |
title_short |
Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds |
url |
https://doi.org/10.1007/s10694-020-01018-5 |
remote_bool |
false |
author2 |
Manzello, Samuel L. |
author2Str |
Manzello, Samuel L. |
ppnlink |
130411485 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10694-020-01018-5 |
up_date |
2024-07-03T21:31:04.875Z |
_version_ |
1803595037935665152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2124045784</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505083000.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10694-020-01018-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124045784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10694-020-01018-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suzuki, Sayaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating Coupled Effect of Radiative Heat Flux and Firebrand Showers on Ignition of Fuel Beds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Fire spread occurs via radiation, flame contact, and firebrands. While firebrand showers are known to be a cause of spot fires which ignite fuels far from the main fire front, in the case of short distance spot fires, radiation from the main fire may play a role for firebrand induced ignition processes. Many past investigations have focused on singular effects on fire spread, and little is known about coupled effects. The coupled effect of radiative heat flux and firebrand showers on ignition processes of fuel beds is studied by using a newly developed experimental protocol. The newly developed protocol includes the addition of a radiant panel to the existing experimental setup of a firebrand generator coupled to a wind facility. Experiments were performed under an applied wind field, as the wind is a key parameter in large outdoor fire spread processes. Results show that radiant heat flux plays an important role for ignition by firebrands under 6 m/s while little effect was observed under 8 m/s.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Firebrands</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ignition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large outdoor fires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">WUI fires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban fires</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manzello, Samuel L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fire technology</subfield><subfield code="d">Springer US, 1965</subfield><subfield code="g">57(2020), 2 vom: 16. Juli, Seite 683-697</subfield><subfield code="w">(DE-627)130411485</subfield><subfield code="w">(DE-600)622603-6</subfield><subfield code="w">(DE-576)028033434</subfield><subfield code="x">0015-2684</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:683-697</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10694-020-01018-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">07</subfield><subfield code="h">683-697</subfield></datafield></record></collection>
|
score |
7.4005327 |