Harmonic maps and shift-invariant subspaces
Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of...
Ausführliche Beschreibung
Autor*in: |
Aleman, Alexandru [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Monatshefte für Mathematik - Springer Vienna, 1948, 194(2021), 4 vom: 29. Jan., Seite 625-656 |
---|---|
Übergeordnetes Werk: |
volume:194 ; year:2021 ; number:4 ; day:29 ; month:01 ; pages:625-656 |
Links: |
---|
DOI / URN: |
10.1007/s00605-021-01516-w |
---|
Katalog-ID: |
OLC2124275658 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2124275658 | ||
003 | DE-627 | ||
005 | 20230505085004.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00605-021-01516-w |2 doi | |
035 | |a (DE-627)OLC2124275658 | ||
035 | |a (DE-He213)s00605-021-01516-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 7170 |q VZ |2 rvk | ||
084 | |a SA 7170 |q VZ |2 rvk | ||
100 | 1 | |a Aleman, Alexandru |e verfasserin |4 aut | |
245 | 1 | 0 | |a Harmonic maps and shift-invariant subspaces |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 | ||
520 | |a Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. | ||
650 | 4 | |a Harmonic maps | |
650 | 4 | |a Riemann surfaces | |
650 | 4 | |a Shift-invariant subspaces | |
700 | 1 | |a Pacheco, Rui |0 (orcid)0000-0001-9578-2380 |4 aut | |
700 | 1 | |a Wood, John C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Monatshefte für Mathematik |d Springer Vienna, 1948 |g 194(2021), 4 vom: 29. Jan., Seite 625-656 |w (DE-627)129492191 |w (DE-600)206474-1 |w (DE-576)014887657 |x 0026-9255 |7 nnns |
773 | 1 | 8 | |g volume:194 |g year:2021 |g number:4 |g day:29 |g month:01 |g pages:625-656 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00605-021-01516-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
936 | r | v | |a SA 7170 |
936 | r | v | |a SA 7170 |
951 | |a AR | ||
952 | |d 194 |j 2021 |e 4 |b 29 |c 01 |h 625-656 |
author_variant |
a a aa r p rp j c w jc jcw |
---|---|
matchkey_str |
article:00269255:2021----::amncasnsitnai |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00605-021-01516-w doi (DE-627)OLC2124275658 (DE-He213)s00605-021-01516-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Aleman, Alexandru verfasserin aut Harmonic maps and shift-invariant subspaces 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. Harmonic maps Riemann surfaces Shift-invariant subspaces Pacheco, Rui (orcid)0000-0001-9578-2380 aut Wood, John C. aut Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 194(2021), 4 vom: 29. Jan., Seite 625-656 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:194 year:2021 number:4 day:29 month:01 pages:625-656 https://doi.org/10.1007/s00605-021-01516-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4012 SA 7170 SA 7170 AR 194 2021 4 29 01 625-656 |
spelling |
10.1007/s00605-021-01516-w doi (DE-627)OLC2124275658 (DE-He213)s00605-021-01516-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Aleman, Alexandru verfasserin aut Harmonic maps and shift-invariant subspaces 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. Harmonic maps Riemann surfaces Shift-invariant subspaces Pacheco, Rui (orcid)0000-0001-9578-2380 aut Wood, John C. aut Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 194(2021), 4 vom: 29. Jan., Seite 625-656 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:194 year:2021 number:4 day:29 month:01 pages:625-656 https://doi.org/10.1007/s00605-021-01516-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4012 SA 7170 SA 7170 AR 194 2021 4 29 01 625-656 |
allfields_unstemmed |
10.1007/s00605-021-01516-w doi (DE-627)OLC2124275658 (DE-He213)s00605-021-01516-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Aleman, Alexandru verfasserin aut Harmonic maps and shift-invariant subspaces 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. Harmonic maps Riemann surfaces Shift-invariant subspaces Pacheco, Rui (orcid)0000-0001-9578-2380 aut Wood, John C. aut Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 194(2021), 4 vom: 29. Jan., Seite 625-656 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:194 year:2021 number:4 day:29 month:01 pages:625-656 https://doi.org/10.1007/s00605-021-01516-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4012 SA 7170 SA 7170 AR 194 2021 4 29 01 625-656 |
allfieldsGer |
10.1007/s00605-021-01516-w doi (DE-627)OLC2124275658 (DE-He213)s00605-021-01516-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Aleman, Alexandru verfasserin aut Harmonic maps and shift-invariant subspaces 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. Harmonic maps Riemann surfaces Shift-invariant subspaces Pacheco, Rui (orcid)0000-0001-9578-2380 aut Wood, John C. aut Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 194(2021), 4 vom: 29. Jan., Seite 625-656 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:194 year:2021 number:4 day:29 month:01 pages:625-656 https://doi.org/10.1007/s00605-021-01516-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4012 SA 7170 SA 7170 AR 194 2021 4 29 01 625-656 |
allfieldsSound |
10.1007/s00605-021-01516-w doi (DE-627)OLC2124275658 (DE-He213)s00605-021-01516-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7170 VZ rvk SA 7170 VZ rvk Aleman, Alexandru verfasserin aut Harmonic maps and shift-invariant subspaces 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. Harmonic maps Riemann surfaces Shift-invariant subspaces Pacheco, Rui (orcid)0000-0001-9578-2380 aut Wood, John C. aut Enthalten in Monatshefte für Mathematik Springer Vienna, 1948 194(2021), 4 vom: 29. Jan., Seite 625-656 (DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 0026-9255 nnns volume:194 year:2021 number:4 day:29 month:01 pages:625-656 https://doi.org/10.1007/s00605-021-01516-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4012 SA 7170 SA 7170 AR 194 2021 4 29 01 625-656 |
language |
English |
source |
Enthalten in Monatshefte für Mathematik 194(2021), 4 vom: 29. Jan., Seite 625-656 volume:194 year:2021 number:4 day:29 month:01 pages:625-656 |
sourceStr |
Enthalten in Monatshefte für Mathematik 194(2021), 4 vom: 29. Jan., Seite 625-656 volume:194 year:2021 number:4 day:29 month:01 pages:625-656 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Harmonic maps Riemann surfaces Shift-invariant subspaces |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Monatshefte für Mathematik |
authorswithroles_txt_mv |
Aleman, Alexandru @@aut@@ Pacheco, Rui @@aut@@ Wood, John C. @@aut@@ |
publishDateDaySort_date |
2021-01-29T00:00:00Z |
hierarchy_top_id |
129492191 |
dewey-sort |
3510 |
id |
OLC2124275658 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2124275658</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505085004.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00605-021-01516-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124275658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00605-021-01516-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aleman, Alexandru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic maps and shift-invariant subspaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shift-invariant subspaces</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pacheco, Rui</subfield><subfield code="0">(orcid)0000-0001-9578-2380</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood, John C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Monatshefte für Mathematik</subfield><subfield code="d">Springer Vienna, 1948</subfield><subfield code="g">194(2021), 4 vom: 29. Jan., Seite 625-656</subfield><subfield code="w">(DE-627)129492191</subfield><subfield code="w">(DE-600)206474-1</subfield><subfield code="w">(DE-576)014887657</subfield><subfield code="x">0026-9255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:194</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:625-656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00605-021-01516-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">194</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">625-656</subfield></datafield></record></collection>
|
author |
Aleman, Alexandru |
spellingShingle |
Aleman, Alexandru ddc 510 ssgn 17,1 rvk SA 7170 misc Harmonic maps misc Riemann surfaces misc Shift-invariant subspaces Harmonic maps and shift-invariant subspaces |
authorStr |
Aleman, Alexandru |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129492191 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-9255 |
topic_title |
510 VZ 17,1 ssgn SA 7170 VZ rvk Harmonic maps and shift-invariant subspaces Harmonic maps Riemann surfaces Shift-invariant subspaces |
topic |
ddc 510 ssgn 17,1 rvk SA 7170 misc Harmonic maps misc Riemann surfaces misc Shift-invariant subspaces |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 7170 misc Harmonic maps misc Riemann surfaces misc Shift-invariant subspaces |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 7170 misc Harmonic maps misc Riemann surfaces misc Shift-invariant subspaces |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Monatshefte für Mathematik |
hierarchy_parent_id |
129492191 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Monatshefte für Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129492191 (DE-600)206474-1 (DE-576)014887657 |
title |
Harmonic maps and shift-invariant subspaces |
ctrlnum |
(DE-627)OLC2124275658 (DE-He213)s00605-021-01516-w-p |
title_full |
Harmonic maps and shift-invariant subspaces |
author_sort |
Aleman, Alexandru |
journal |
Monatshefte für Mathematik |
journalStr |
Monatshefte für Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
625 |
author_browse |
Aleman, Alexandru Pacheco, Rui Wood, John C. |
container_volume |
194 |
class |
510 VZ 17,1 ssgn SA 7170 VZ rvk |
format_se |
Aufsätze |
author-letter |
Aleman, Alexandru |
doi_str_mv |
10.1007/s00605-021-01516-w |
normlink |
(ORCID)0000-0001-9578-2380 |
normlink_prefix_str_mv |
(orcid)0000-0001-9578-2380 |
dewey-full |
510 |
title_sort |
harmonic maps and shift-invariant subspaces |
title_auth |
Harmonic maps and shift-invariant subspaces |
abstract |
Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 |
abstractGer |
Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 |
abstract_unstemmed |
Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model. © The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_267 GBV_ILN_2088 GBV_ILN_4012 |
container_issue |
4 |
title_short |
Harmonic maps and shift-invariant subspaces |
url |
https://doi.org/10.1007/s00605-021-01516-w |
remote_bool |
false |
author2 |
Pacheco, Rui Wood, John C. |
author2Str |
Pacheco, Rui Wood, John C. |
ppnlink |
129492191 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00605-021-01516-w |
up_date |
2024-07-03T22:49:41.733Z |
_version_ |
1803599983923953664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2124275658</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505085004.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00605-021-01516-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124275658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00605-021-01516-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7170</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aleman, Alexandru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic maps and shift-invariant subspaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group $${{\,\mathrm{U}\,}}(n)$$. These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of $$L^2(S^1,{{\mathbb {C}}}^n)$$; we give a new description of that model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shift-invariant subspaces</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pacheco, Rui</subfield><subfield code="0">(orcid)0000-0001-9578-2380</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood, John C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Monatshefte für Mathematik</subfield><subfield code="d">Springer Vienna, 1948</subfield><subfield code="g">194(2021), 4 vom: 29. Jan., Seite 625-656</subfield><subfield code="w">(DE-627)129492191</subfield><subfield code="w">(DE-600)206474-1</subfield><subfield code="w">(DE-576)014887657</subfield><subfield code="x">0026-9255</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:194</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:625-656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00605-021-01516-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">194</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">625-656</subfield></datafield></record></collection>
|
score |
7.401458 |