Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater
Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchi...
Ausführliche Beschreibung
Autor*in: |
Wang, Hong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Hierarchically porous titanium membrane |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Catalysis letters - Springer US, 1988, 151(2020), 4 vom: 03. Sept., Seite 1167-1179 |
---|---|
Übergeordnetes Werk: |
volume:151 ; year:2020 ; number:4 ; day:03 ; month:09 ; pages:1167-1179 |
Links: |
---|
DOI / URN: |
10.1007/s10562-020-03337-2 |
---|
Katalog-ID: |
OLC2124528602 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2124528602 | ||
003 | DE-627 | ||
005 | 20230505091016.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10562-020-03337-2 |2 doi | |
035 | |a (DE-627)OLC2124528602 | ||
035 | |a (DE-He213)s10562-020-03337-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q VZ |
084 | |a VA 2890 |q VZ |2 rvk | ||
100 | 1 | |a Wang, Hong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract | ||
650 | 4 | |a Hierarchically porous titanium membrane | |
650 | 4 | |a Melt-dealloying | |
650 | 4 | |a Electrocatalytic membrane reactor | |
650 | 4 | |a Manganese oxide catalysts | |
700 | 1 | |a Duan, Yalong |4 aut | |
700 | 1 | |a Kang, Jianli |4 aut | |
700 | 1 | |a Hui, Hongsen |4 aut | |
700 | 1 | |a Li, Jianxin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Catalysis letters |d Springer US, 1988 |g 151(2020), 4 vom: 03. Sept., Seite 1167-1179 |w (DE-627)130436550 |w (DE-600)644234-1 |w (DE-576)025720724 |x 1011-372X |7 nnns |
773 | 1 | 8 | |g volume:151 |g year:2020 |g number:4 |g day:03 |g month:09 |g pages:1167-1179 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10562-020-03337-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
936 | r | v | |a VA 2890 |
951 | |a AR | ||
952 | |d 151 |j 2020 |e 4 |b 03 |c 09 |h 1167-1179 |
author_variant |
h w hw y d yd j k jk h h hh j l jl |
---|---|
matchkey_str |
article:1011372X:2020----::arctooheacialpruttnummrneetoeohglefceteaainnd |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10562-020-03337-2 doi (DE-627)OLC2124528602 (DE-He213)s10562-020-03337-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Wang, Hong verfasserin aut Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts Duan, Yalong aut Kang, Jianli aut Hui, Hongsen aut Li, Jianxin aut Enthalten in Catalysis letters Springer US, 1988 151(2020), 4 vom: 03. Sept., Seite 1167-1179 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 https://doi.org/10.1007/s10562-020-03337-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2020 4 03 09 1167-1179 |
spelling |
10.1007/s10562-020-03337-2 doi (DE-627)OLC2124528602 (DE-He213)s10562-020-03337-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Wang, Hong verfasserin aut Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts Duan, Yalong aut Kang, Jianli aut Hui, Hongsen aut Li, Jianxin aut Enthalten in Catalysis letters Springer US, 1988 151(2020), 4 vom: 03. Sept., Seite 1167-1179 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 https://doi.org/10.1007/s10562-020-03337-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2020 4 03 09 1167-1179 |
allfields_unstemmed |
10.1007/s10562-020-03337-2 doi (DE-627)OLC2124528602 (DE-He213)s10562-020-03337-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Wang, Hong verfasserin aut Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts Duan, Yalong aut Kang, Jianli aut Hui, Hongsen aut Li, Jianxin aut Enthalten in Catalysis letters Springer US, 1988 151(2020), 4 vom: 03. Sept., Seite 1167-1179 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 https://doi.org/10.1007/s10562-020-03337-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2020 4 03 09 1167-1179 |
allfieldsGer |
10.1007/s10562-020-03337-2 doi (DE-627)OLC2124528602 (DE-He213)s10562-020-03337-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Wang, Hong verfasserin aut Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts Duan, Yalong aut Kang, Jianli aut Hui, Hongsen aut Li, Jianxin aut Enthalten in Catalysis letters Springer US, 1988 151(2020), 4 vom: 03. Sept., Seite 1167-1179 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 https://doi.org/10.1007/s10562-020-03337-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2020 4 03 09 1167-1179 |
allfieldsSound |
10.1007/s10562-020-03337-2 doi (DE-627)OLC2124528602 (DE-He213)s10562-020-03337-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Wang, Hong verfasserin aut Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts Duan, Yalong aut Kang, Jianli aut Hui, Hongsen aut Li, Jianxin aut Enthalten in Catalysis letters Springer US, 1988 151(2020), 4 vom: 03. Sept., Seite 1167-1179 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 https://doi.org/10.1007/s10562-020-03337-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2020 4 03 09 1167-1179 |
language |
English |
source |
Enthalten in Catalysis letters 151(2020), 4 vom: 03. Sept., Seite 1167-1179 volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 |
sourceStr |
Enthalten in Catalysis letters 151(2020), 4 vom: 03. Sept., Seite 1167-1179 volume:151 year:2020 number:4 day:03 month:09 pages:1167-1179 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Catalysis letters |
authorswithroles_txt_mv |
Wang, Hong @@aut@@ Duan, Yalong @@aut@@ Kang, Jianli @@aut@@ Hui, Hongsen @@aut@@ Li, Jianxin @@aut@@ |
publishDateDaySort_date |
2020-09-03T00:00:00Z |
hierarchy_top_id |
130436550 |
dewey-sort |
3540 |
id |
OLC2124528602 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2124528602</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505091016.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10562-020-03337-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124528602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10562-020-03337-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 2890</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchically porous titanium membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melt-dealloying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrocatalytic membrane reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manganese oxide catalysts</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Yalong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Jianli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hui, Hongsen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jianxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Catalysis letters</subfield><subfield code="d">Springer US, 1988</subfield><subfield code="g">151(2020), 4 vom: 03. Sept., Seite 1167-1179</subfield><subfield code="w">(DE-627)130436550</subfield><subfield code="w">(DE-600)644234-1</subfield><subfield code="w">(DE-576)025720724</subfield><subfield code="x">1011-372X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1167-1179</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10562-020-03337-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 2890</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield><subfield code="h">1167-1179</subfield></datafield></record></collection>
|
author |
Wang, Hong |
spellingShingle |
Wang, Hong ddc 540 rvk VA 2890 misc Hierarchically porous titanium membrane misc Melt-dealloying misc Electrocatalytic membrane reactor misc Manganese oxide catalysts Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater |
authorStr |
Wang, Hong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130436550 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1011-372X |
topic_title |
540 660 VZ VA 2890 VZ rvk Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater Hierarchically porous titanium membrane Melt-dealloying Electrocatalytic membrane reactor Manganese oxide catalysts |
topic |
ddc 540 rvk VA 2890 misc Hierarchically porous titanium membrane misc Melt-dealloying misc Electrocatalytic membrane reactor misc Manganese oxide catalysts |
topic_unstemmed |
ddc 540 rvk VA 2890 misc Hierarchically porous titanium membrane misc Melt-dealloying misc Electrocatalytic membrane reactor misc Manganese oxide catalysts |
topic_browse |
ddc 540 rvk VA 2890 misc Hierarchically porous titanium membrane misc Melt-dealloying misc Electrocatalytic membrane reactor misc Manganese oxide catalysts |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Catalysis letters |
hierarchy_parent_id |
130436550 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Catalysis letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 |
title |
Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater |
ctrlnum |
(DE-627)OLC2124528602 (DE-He213)s10562-020-03337-2-p |
title_full |
Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater |
author_sort |
Wang, Hong |
journal |
Catalysis letters |
journalStr |
Catalysis letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1167 |
author_browse |
Wang, Hong Duan, Yalong Kang, Jianli Hui, Hongsen Li, Jianxin |
container_volume |
151 |
class |
540 660 VZ VA 2890 VZ rvk |
format_se |
Aufsätze |
author-letter |
Wang, Hong |
doi_str_mv |
10.1007/s10562-020-03337-2 |
dewey-full |
540 660 |
title_sort |
fabrication of hierarchically porous titanium membrane electrode for highly-efficient separation and degradation of congo red wastewater |
title_auth |
Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater |
abstract |
Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE |
container_issue |
4 |
title_short |
Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater |
url |
https://doi.org/10.1007/s10562-020-03337-2 |
remote_bool |
false |
author2 |
Duan, Yalong Kang, Jianli Hui, Hongsen Li, Jianxin |
author2Str |
Duan, Yalong Kang, Jianli Hui, Hongsen Li, Jianxin |
ppnlink |
130436550 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10562-020-03337-2 |
up_date |
2024-07-04T00:10:41.249Z |
_version_ |
1803605079490560000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2124528602</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505091016.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10562-020-03337-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124528602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10562-020-03337-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 2890</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fabrication of Hierarchically Porous Titanium Membrane Electrode for Highly-Efficient Separation and Degradation of Congo Red Wastewater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Commercially Ti membrane was chosen as the substrate of electrochemical technique because of its excellent conductivity and oxidation resistivity. However, a sole macroporous structure and low porosity limit reaction efficiency in application of electrochemical reaction. Nowadays, hierarchically porous structure have attracted interest in catalytic or electrochemical reactions owing to their large surface areas and rich pore channels. Herein, we report a hierarchically porous titanium (Ti) membrane (hp-Ti) with pore sizes mesopores (2–10 nm) and macropores (0.2–50 µm), which was fabricated by a combination of sintering and melt-dealloying processes. The macropores guaranteed an adequate flow rate through the membrane with low pressure, while the mesopores provided an ultrahigh surface area. The hierarchically porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/hp-Ti) by the sol–gel method exhibited better electrochemical properties than the commercially porous Ti membrane with nano-$ MnO_{x} $ loaded ($ MnO_{x} $/cp-Ti), mainly due to the massive pathways of rapid diffusion, high surface areas, and abundant active sites. Further, $ MnO_{x} $/hp-Ti as the anode constituted an electrocatalytic membrane reactor (ECMR) for congo red wastewater treatment (50–200 mg·$ L^{−1} $). With the same energy consumption (0.654 kW·h·$ m^{−3} $) of ECMR, the removal rate of the total organic carbon (TOC) obtained by ECMR with $ MnO_{x} $/hp-Ti at an optimized condition was up to 80% which was higher than 73.8% of $ MnO_{x} $/cp-Ti. This work offers significant insights into developing new porous membrane electrodes for dye separation and degradation. Graphic Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchically porous titanium membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melt-dealloying</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrocatalytic membrane reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manganese oxide catalysts</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Yalong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Jianli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hui, Hongsen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jianxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Catalysis letters</subfield><subfield code="d">Springer US, 1988</subfield><subfield code="g">151(2020), 4 vom: 03. Sept., Seite 1167-1179</subfield><subfield code="w">(DE-627)130436550</subfield><subfield code="w">(DE-600)644234-1</subfield><subfield code="w">(DE-576)025720724</subfield><subfield code="x">1011-372X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1167-1179</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10562-020-03337-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 2890</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield><subfield code="h">1167-1179</subfield></datafield></record></collection>
|
score |
7.4031916 |