Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes
In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of vol...
Ausführliche Beschreibung
Autor*in: |
Zounemat-Kermani, Mohammad [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 25(2021), 8 vom: 15. Feb., Seite 6373-6390 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2021 ; number:8 ; day:15 ; month:02 ; pages:6373-6390 |
Links: |
---|
DOI / URN: |
10.1007/s00500-021-05628-1 |
---|
Katalog-ID: |
OLC212461035X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC212461035X | ||
003 | DE-627 | ||
005 | 20230505091711.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-021-05628-1 |2 doi | |
035 | |a (DE-627)OLC212461035X | ||
035 | |a (DE-He213)s00500-021-05628-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Zounemat-Kermani, Mohammad |e verfasserin |0 (orcid)0000-0002-1421-8671 |4 aut | |
245 | 1 | 0 | |a Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 | ||
520 | |a In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract | ||
650 | 4 | |a Swarm intelligence | |
650 | 4 | |a Heuristic algorithms | |
650 | 4 | |a Soft computing | |
650 | 4 | |a Hydraulics of sewers | |
650 | 4 | |a Data mining | |
700 | 1 | |a Mahdavi-Meymand, Amin |0 (orcid)0000-0002-9125-5214 |4 aut | |
700 | 1 | |a Hinkelmann, Reinhard |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 25(2021), 8 vom: 15. Feb., Seite 6373-6390 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2021 |g number:8 |g day:15 |g month:02 |g pages:6373-6390 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-021-05628-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 25 |j 2021 |e 8 |b 15 |c 02 |h 6373-6390 |
author_variant |
m z k mzk a m m amm r h rh |
---|---|
matchkey_str |
article:14327643:2021----::auenprdloihsnaiayniernmdligeie |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00500-021-05628-1 doi (DE-627)OLC212461035X (DE-He213)s00500-021-05628-1-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Zounemat-Kermani, Mohammad verfasserin (orcid)0000-0002-1421-8671 aut Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining Mahdavi-Meymand, Amin (orcid)0000-0002-9125-5214 aut Hinkelmann, Reinhard aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 25(2021), 8 vom: 15. Feb., Seite 6373-6390 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 https://doi.org/10.1007/s00500-021-05628-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 25 2021 8 15 02 6373-6390 |
spelling |
10.1007/s00500-021-05628-1 doi (DE-627)OLC212461035X (DE-He213)s00500-021-05628-1-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Zounemat-Kermani, Mohammad verfasserin (orcid)0000-0002-1421-8671 aut Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining Mahdavi-Meymand, Amin (orcid)0000-0002-9125-5214 aut Hinkelmann, Reinhard aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 25(2021), 8 vom: 15. Feb., Seite 6373-6390 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 https://doi.org/10.1007/s00500-021-05628-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 25 2021 8 15 02 6373-6390 |
allfields_unstemmed |
10.1007/s00500-021-05628-1 doi (DE-627)OLC212461035X (DE-He213)s00500-021-05628-1-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Zounemat-Kermani, Mohammad verfasserin (orcid)0000-0002-1421-8671 aut Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining Mahdavi-Meymand, Amin (orcid)0000-0002-9125-5214 aut Hinkelmann, Reinhard aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 25(2021), 8 vom: 15. Feb., Seite 6373-6390 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 https://doi.org/10.1007/s00500-021-05628-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 25 2021 8 15 02 6373-6390 |
allfieldsGer |
10.1007/s00500-021-05628-1 doi (DE-627)OLC212461035X (DE-He213)s00500-021-05628-1-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Zounemat-Kermani, Mohammad verfasserin (orcid)0000-0002-1421-8671 aut Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining Mahdavi-Meymand, Amin (orcid)0000-0002-9125-5214 aut Hinkelmann, Reinhard aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 25(2021), 8 vom: 15. Feb., Seite 6373-6390 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 https://doi.org/10.1007/s00500-021-05628-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 25 2021 8 15 02 6373-6390 |
allfieldsSound |
10.1007/s00500-021-05628-1 doi (DE-627)OLC212461035X (DE-He213)s00500-021-05628-1-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Zounemat-Kermani, Mohammad verfasserin (orcid)0000-0002-1421-8671 aut Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining Mahdavi-Meymand, Amin (orcid)0000-0002-9125-5214 aut Hinkelmann, Reinhard aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 25(2021), 8 vom: 15. Feb., Seite 6373-6390 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 https://doi.org/10.1007/s00500-021-05628-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 25 2021 8 15 02 6373-6390 |
language |
English |
source |
Enthalten in Soft computing 25(2021), 8 vom: 15. Feb., Seite 6373-6390 volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 |
sourceStr |
Enthalten in Soft computing 25(2021), 8 vom: 15. Feb., Seite 6373-6390 volume:25 year:2021 number:8 day:15 month:02 pages:6373-6390 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Zounemat-Kermani, Mohammad @@aut@@ Mahdavi-Meymand, Amin @@aut@@ Hinkelmann, Reinhard @@aut@@ |
publishDateDaySort_date |
2021-02-15T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC212461035X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC212461035X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505091711.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-021-05628-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC212461035X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-021-05628-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zounemat-Kermani, Mohammad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1421-8671</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swarm intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics of sewers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahdavi-Meymand, Amin</subfield><subfield code="0">(orcid)0000-0002-9125-5214</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hinkelmann, Reinhard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">25(2021), 8 vom: 15. Feb., Seite 6373-6390</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:6373-6390</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-021-05628-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">02</subfield><subfield code="h">6373-6390</subfield></datafield></record></collection>
|
author |
Zounemat-Kermani, Mohammad |
spellingShingle |
Zounemat-Kermani, Mohammad ddc 004 ssgn 11 misc Swarm intelligence misc Heuristic algorithms misc Soft computing misc Hydraulics of sewers misc Data mining Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
authorStr |
Zounemat-Kermani, Mohammad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes Swarm intelligence Heuristic algorithms Soft computing Hydraulics of sewers Data mining |
topic |
ddc 004 ssgn 11 misc Swarm intelligence misc Heuristic algorithms misc Soft computing misc Hydraulics of sewers misc Data mining |
topic_unstemmed |
ddc 004 ssgn 11 misc Swarm intelligence misc Heuristic algorithms misc Soft computing misc Hydraulics of sewers misc Data mining |
topic_browse |
ddc 004 ssgn 11 misc Swarm intelligence misc Heuristic algorithms misc Soft computing misc Hydraulics of sewers misc Data mining |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
ctrlnum |
(DE-627)OLC212461035X (DE-He213)s00500-021-05628-1-p |
title_full |
Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
author_sort |
Zounemat-Kermani, Mohammad |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
6373 |
author_browse |
Zounemat-Kermani, Mohammad Mahdavi-Meymand, Amin Hinkelmann, Reinhard |
container_volume |
25 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Zounemat-Kermani, Mohammad |
doi_str_mv |
10.1007/s00500-021-05628-1 |
normlink |
(ORCID)0000-0002-1421-8671 (ORCID)0000-0002-9125-5214 |
normlink_prefix_str_mv |
(orcid)0000-0002-1421-8671 (orcid)0000-0002-9125-5214 |
dewey-full |
004 |
title_sort |
nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
title_auth |
Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
abstract |
In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
abstractGer |
In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
abstract_unstemmed |
In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
8 |
title_short |
Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes |
url |
https://doi.org/10.1007/s00500-021-05628-1 |
remote_bool |
false |
author2 |
Mahdavi-Meymand, Amin Hinkelmann, Reinhard |
author2Str |
Mahdavi-Meymand, Amin Hinkelmann, Reinhard |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-021-05628-1 |
up_date |
2024-07-04T00:35:46.320Z |
_version_ |
1803606657671888896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC212461035X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505091711.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-021-05628-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC212461035X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-021-05628-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zounemat-Kermani, Mohammad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1421-8671</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm (BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems. Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for determining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression; SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of determination (R2), and comprehensive synthesis index (SI) as well as Taylor diagram were used to further quantify simulating and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction. Graphic abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swarm intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics of sewers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahdavi-Meymand, Amin</subfield><subfield code="0">(orcid)0000-0002-9125-5214</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hinkelmann, Reinhard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">25(2021), 8 vom: 15. Feb., Seite 6373-6390</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:6373-6390</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-021-05628-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">02</subfield><subfield code="h">6373-6390</subfield></datafield></record></collection>
|
score |
7.401353 |