Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method
The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equation...
Ausführliche Beschreibung
Autor*in: |
Sorrenti, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanics of composite materials - Springer US, 1980, 57(2021), 1 vom: März, Seite 1-18 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2021 ; number:1 ; month:03 ; pages:1-18 |
Links: |
---|
DOI / URN: |
10.1007/s11029-021-09929-2 |
---|
Katalog-ID: |
OLC2124672665 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2124672665 | ||
003 | DE-627 | ||
005 | 20230624203255.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11029-021-09929-2 |2 doi | |
035 | |a (DE-627)OLC2124672665 | ||
035 | |a (DE-He213)s11029-021-09929-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
100 | 1 | |a Sorrenti, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. | ||
650 | 4 | |a refined zigzag theory | |
650 | 4 | |a higher-order Haar wavelet method | |
650 | 4 | |a multilayered composite beam | |
650 | 4 | |a bending | |
650 | 4 | |a buckling | |
700 | 1 | |a Di Sciuva, M. |4 aut | |
700 | 1 | |a Majak, J. |4 aut | |
700 | 1 | |a Auriemma, F. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mechanics of composite materials |d Springer US, 1980 |g 57(2021), 1 vom: März, Seite 1-18 |w (DE-627)130525332 |w (DE-600)771508-0 |w (DE-576)9130525330 |x 0191-5665 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2021 |g number:1 |g month:03 |g pages:1-18 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11029-021-09929-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 57 |j 2021 |e 1 |c 03 |h 1-18 |
author_variant |
m s ms s m d sm smd j m jm f a fa |
---|---|
matchkey_str |
article:01915665:2021----::ttcepnenbclnlasfutlyrdopstbassnteeiezgatera |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11029-021-09929-2 doi (DE-627)OLC2124672665 (DE-He213)s11029-021-09929-2-p DE-627 ger DE-627 rakwb eng 540 VZ Sorrenti, M. verfasserin aut Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling Di Sciuva, M. aut Majak, J. aut Auriemma, F. aut Enthalten in Mechanics of composite materials Springer US, 1980 57(2021), 1 vom: März, Seite 1-18 (DE-627)130525332 (DE-600)771508-0 (DE-576)9130525330 0191-5665 nnns volume:57 year:2021 number:1 month:03 pages:1-18 https://doi.org/10.1007/s11029-021-09929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA AR 57 2021 1 03 1-18 |
spelling |
10.1007/s11029-021-09929-2 doi (DE-627)OLC2124672665 (DE-He213)s11029-021-09929-2-p DE-627 ger DE-627 rakwb eng 540 VZ Sorrenti, M. verfasserin aut Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling Di Sciuva, M. aut Majak, J. aut Auriemma, F. aut Enthalten in Mechanics of composite materials Springer US, 1980 57(2021), 1 vom: März, Seite 1-18 (DE-627)130525332 (DE-600)771508-0 (DE-576)9130525330 0191-5665 nnns volume:57 year:2021 number:1 month:03 pages:1-18 https://doi.org/10.1007/s11029-021-09929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA AR 57 2021 1 03 1-18 |
allfields_unstemmed |
10.1007/s11029-021-09929-2 doi (DE-627)OLC2124672665 (DE-He213)s11029-021-09929-2-p DE-627 ger DE-627 rakwb eng 540 VZ Sorrenti, M. verfasserin aut Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling Di Sciuva, M. aut Majak, J. aut Auriemma, F. aut Enthalten in Mechanics of composite materials Springer US, 1980 57(2021), 1 vom: März, Seite 1-18 (DE-627)130525332 (DE-600)771508-0 (DE-576)9130525330 0191-5665 nnns volume:57 year:2021 number:1 month:03 pages:1-18 https://doi.org/10.1007/s11029-021-09929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA AR 57 2021 1 03 1-18 |
allfieldsGer |
10.1007/s11029-021-09929-2 doi (DE-627)OLC2124672665 (DE-He213)s11029-021-09929-2-p DE-627 ger DE-627 rakwb eng 540 VZ Sorrenti, M. verfasserin aut Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling Di Sciuva, M. aut Majak, J. aut Auriemma, F. aut Enthalten in Mechanics of composite materials Springer US, 1980 57(2021), 1 vom: März, Seite 1-18 (DE-627)130525332 (DE-600)771508-0 (DE-576)9130525330 0191-5665 nnns volume:57 year:2021 number:1 month:03 pages:1-18 https://doi.org/10.1007/s11029-021-09929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA AR 57 2021 1 03 1-18 |
allfieldsSound |
10.1007/s11029-021-09929-2 doi (DE-627)OLC2124672665 (DE-He213)s11029-021-09929-2-p DE-627 ger DE-627 rakwb eng 540 VZ Sorrenti, M. verfasserin aut Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2021 The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling Di Sciuva, M. aut Majak, J. aut Auriemma, F. aut Enthalten in Mechanics of composite materials Springer US, 1980 57(2021), 1 vom: März, Seite 1-18 (DE-627)130525332 (DE-600)771508-0 (DE-576)9130525330 0191-5665 nnns volume:57 year:2021 number:1 month:03 pages:1-18 https://doi.org/10.1007/s11029-021-09929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA AR 57 2021 1 03 1-18 |
language |
English |
source |
Enthalten in Mechanics of composite materials 57(2021), 1 vom: März, Seite 1-18 volume:57 year:2021 number:1 month:03 pages:1-18 |
sourceStr |
Enthalten in Mechanics of composite materials 57(2021), 1 vom: März, Seite 1-18 volume:57 year:2021 number:1 month:03 pages:1-18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Mechanics of composite materials |
authorswithroles_txt_mv |
Sorrenti, M. @@aut@@ Di Sciuva, M. @@aut@@ Majak, J. @@aut@@ Auriemma, F. @@aut@@ |
publishDateDaySort_date |
2021-03-01T00:00:00Z |
hierarchy_top_id |
130525332 |
dewey-sort |
3540 |
id |
OLC2124672665 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2124672665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624203255.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11029-021-09929-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124672665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11029-021-09929-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sorrenti, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refined zigzag theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher-order Haar wavelet method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multilayered composite beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bending</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">buckling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Sciuva, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Majak, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Auriemma, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanics of composite materials</subfield><subfield code="d">Springer US, 1980</subfield><subfield code="g">57(2021), 1 vom: März, Seite 1-18</subfield><subfield code="w">(DE-627)130525332</subfield><subfield code="w">(DE-600)771508-0</subfield><subfield code="w">(DE-576)9130525330</subfield><subfield code="x">0191-5665</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-18</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11029-021-09929-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">1-18</subfield></datafield></record></collection>
|
author |
Sorrenti, M. |
spellingShingle |
Sorrenti, M. ddc 540 misc refined zigzag theory misc higher-order Haar wavelet method misc multilayered composite beam misc bending misc buckling Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method |
authorStr |
Sorrenti, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130525332 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0191-5665 |
topic_title |
540 VZ Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method refined zigzag theory higher-order Haar wavelet method multilayered composite beam bending buckling |
topic |
ddc 540 misc refined zigzag theory misc higher-order Haar wavelet method misc multilayered composite beam misc bending misc buckling |
topic_unstemmed |
ddc 540 misc refined zigzag theory misc higher-order Haar wavelet method misc multilayered composite beam misc bending misc buckling |
topic_browse |
ddc 540 misc refined zigzag theory misc higher-order Haar wavelet method misc multilayered composite beam misc bending misc buckling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mechanics of composite materials |
hierarchy_parent_id |
130525332 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Mechanics of composite materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130525332 (DE-600)771508-0 (DE-576)9130525330 |
title |
Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method |
ctrlnum |
(DE-627)OLC2124672665 (DE-He213)s11029-021-09929-2-p |
title_full |
Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method |
author_sort |
Sorrenti, M. |
journal |
Mechanics of composite materials |
journalStr |
Mechanics of composite materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Sorrenti, M. Di Sciuva, M. Majak, J. Auriemma, F. |
container_volume |
57 |
class |
540 VZ |
format_se |
Aufsätze |
author-letter |
Sorrenti, M. |
doi_str_mv |
10.1007/s11029-021-09929-2 |
dewey-full |
540 |
title_sort |
static response and buckling loads of multilayered composite beams using the refined zigzag theory and higher-order haar wavelet method |
title_auth |
Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method |
abstract |
The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. © Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. © Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered. © Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA |
container_issue |
1 |
title_short |
Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method |
url |
https://doi.org/10.1007/s11029-021-09929-2 |
remote_bool |
false |
author2 |
Di Sciuva, M. Majak, J. Auriemma, F. |
author2Str |
Di Sciuva, M. Majak, J. Auriemma, F. |
ppnlink |
130525332 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11029-021-09929-2 |
up_date |
2024-07-04T00:52:55.847Z |
_version_ |
1803607737209192448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2124672665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624203255.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11029-021-09929-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2124672665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11029-021-09929-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sorrenti, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Static Response and Buckling Loads of Multilayered Composite Beams Using the Refined Zigzag Theory and Higher-Order Haar Wavelet Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents a review of Haar wavelet methods and an application of the higher-order Haar wavelet method to study the behavior of multilayered composite beams under static and buckling loads. The Refined Zigzag Theory (RZT) is used to formulate the corresponding governing differential equations (equilibrium/stability equations and boundary conditions). To solve these equations numerically, the recently developed Higher-Order Haar Wavelet Method (HOHWM) is used. The results found are compared with those obtained by the widely used Haar Wavelet Method (HWM) and the Generalized Differential Quadrature Method (GDQM). The relative numerical performances of these numerical methods are assessed and validated by comparing them with exact analytical solutions. Furthermore, a detailed convergence study is conducted to analyze the convergence characteristics (absolute errors and the order of convergence) of the method presented. It is concluded that the HOHWM, when applied to RZT beam equilibrium equations in static and linear buckling problems, is capable of predicting, with a good accuracy, the unknown kinematic variables and their derivatives. The HOHWM is also found to be computationally competitive with the other numerical methods considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">refined zigzag theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher-order Haar wavelet method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multilayered composite beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bending</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">buckling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Sciuva, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Majak, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Auriemma, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mechanics of composite materials</subfield><subfield code="d">Springer US, 1980</subfield><subfield code="g">57(2021), 1 vom: März, Seite 1-18</subfield><subfield code="w">(DE-627)130525332</subfield><subfield code="w">(DE-600)771508-0</subfield><subfield code="w">(DE-576)9130525330</subfield><subfield code="x">0191-5665</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1-18</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11029-021-09929-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">1-18</subfield></datafield></record></collection>
|
score |
7.401045 |