Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment
Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state...
Ausführliche Beschreibung
Autor*in: |
Léculier, Alexis [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of dynamics and differential equations - Springer US, 1989, 33(2020), 2 vom: 19. März, Seite 863-890 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2020 ; number:2 ; day:19 ; month:03 ; pages:863-890 |
Links: |
---|
DOI / URN: |
10.1007/s10884-020-09837-4 |
---|
Katalog-ID: |
OLC212506555X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC212506555X | ||
003 | DE-627 | ||
005 | 20230505094952.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10884-020-09837-4 |2 doi | |
035 | |a (DE-627)OLC212506555X | ||
035 | |a (DE-He213)s10884-020-09837-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Léculier, Alexis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. | ||
650 | 4 | |a Non-local fractional operator | |
650 | 4 | |a Fisher KPP | |
650 | 4 | |a Asymptotic analysis | |
650 | 4 | |a Exponential speed of propagation | |
650 | 4 | |a Perturbed test function | |
700 | 1 | |a Mirrahimi, Sepideh |4 aut | |
700 | 1 | |a Roquejoffre, Jean-Michel |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of dynamics and differential equations |d Springer US, 1989 |g 33(2020), 2 vom: 19. März, Seite 863-890 |w (DE-627)165666455 |w (DE-600)1008261-X |w (DE-576)023042591 |x 1040-7294 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2020 |g number:2 |g day:19 |g month:03 |g pages:863-890 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10884-020-09837-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 33 |j 2020 |e 2 |b 19 |c 03 |h 863-890 |
author_variant |
a l al s m sm j m r jmr |
---|---|
matchkey_str |
article:10407294:2020----::rpgtoiarcinlecinifsoeutoiaeidc |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10884-020-09837-4 doi (DE-627)OLC212506555X (DE-He213)s10884-020-09837-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Léculier, Alexis verfasserin aut Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function Mirrahimi, Sepideh aut Roquejoffre, Jean-Michel aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 33(2020), 2 vom: 19. März, Seite 863-890 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:33 year:2020 number:2 day:19 month:03 pages:863-890 https://doi.org/10.1007/s10884-020-09837-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4126 AR 33 2020 2 19 03 863-890 |
spelling |
10.1007/s10884-020-09837-4 doi (DE-627)OLC212506555X (DE-He213)s10884-020-09837-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Léculier, Alexis verfasserin aut Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function Mirrahimi, Sepideh aut Roquejoffre, Jean-Michel aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 33(2020), 2 vom: 19. März, Seite 863-890 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:33 year:2020 number:2 day:19 month:03 pages:863-890 https://doi.org/10.1007/s10884-020-09837-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4126 AR 33 2020 2 19 03 863-890 |
allfields_unstemmed |
10.1007/s10884-020-09837-4 doi (DE-627)OLC212506555X (DE-He213)s10884-020-09837-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Léculier, Alexis verfasserin aut Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function Mirrahimi, Sepideh aut Roquejoffre, Jean-Michel aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 33(2020), 2 vom: 19. März, Seite 863-890 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:33 year:2020 number:2 day:19 month:03 pages:863-890 https://doi.org/10.1007/s10884-020-09837-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4126 AR 33 2020 2 19 03 863-890 |
allfieldsGer |
10.1007/s10884-020-09837-4 doi (DE-627)OLC212506555X (DE-He213)s10884-020-09837-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Léculier, Alexis verfasserin aut Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function Mirrahimi, Sepideh aut Roquejoffre, Jean-Michel aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 33(2020), 2 vom: 19. März, Seite 863-890 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:33 year:2020 number:2 day:19 month:03 pages:863-890 https://doi.org/10.1007/s10884-020-09837-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4126 AR 33 2020 2 19 03 863-890 |
allfieldsSound |
10.1007/s10884-020-09837-4 doi (DE-627)OLC212506555X (DE-He213)s10884-020-09837-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Léculier, Alexis verfasserin aut Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function Mirrahimi, Sepideh aut Roquejoffre, Jean-Michel aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 33(2020), 2 vom: 19. März, Seite 863-890 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:33 year:2020 number:2 day:19 month:03 pages:863-890 https://doi.org/10.1007/s10884-020-09837-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4126 AR 33 2020 2 19 03 863-890 |
language |
English |
source |
Enthalten in Journal of dynamics and differential equations 33(2020), 2 vom: 19. März, Seite 863-890 volume:33 year:2020 number:2 day:19 month:03 pages:863-890 |
sourceStr |
Enthalten in Journal of dynamics and differential equations 33(2020), 2 vom: 19. März, Seite 863-890 volume:33 year:2020 number:2 day:19 month:03 pages:863-890 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of dynamics and differential equations |
authorswithroles_txt_mv |
Léculier, Alexis @@aut@@ Mirrahimi, Sepideh @@aut@@ Roquejoffre, Jean-Michel @@aut@@ |
publishDateDaySort_date |
2020-03-19T00:00:00Z |
hierarchy_top_id |
165666455 |
dewey-sort |
3510 |
id |
OLC212506555X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC212506555X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505094952.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10884-020-09837-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC212506555X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10884-020-09837-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Léculier, Alexis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-local fractional operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fisher KPP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential speed of propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbed test function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirrahimi, Sepideh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roquejoffre, Jean-Michel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of dynamics and differential equations</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">33(2020), 2 vom: 19. März, Seite 863-890</subfield><subfield code="w">(DE-627)165666455</subfield><subfield code="w">(DE-600)1008261-X</subfield><subfield code="w">(DE-576)023042591</subfield><subfield code="x">1040-7294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:19</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:863-890</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10884-020-09837-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">19</subfield><subfield code="c">03</subfield><subfield code="h">863-890</subfield></datafield></record></collection>
|
author |
Léculier, Alexis |
spellingShingle |
Léculier, Alexis ddc 510 ssgn 17,1 misc Non-local fractional operator misc Fisher KPP misc Asymptotic analysis misc Exponential speed of propagation misc Perturbed test function Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment |
authorStr |
Léculier, Alexis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165666455 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1040-7294 |
topic_title |
510 VZ 17,1 ssgn Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment Non-local fractional operator Fisher KPP Asymptotic analysis Exponential speed of propagation Perturbed test function |
topic |
ddc 510 ssgn 17,1 misc Non-local fractional operator misc Fisher KPP misc Asymptotic analysis misc Exponential speed of propagation misc Perturbed test function |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Non-local fractional operator misc Fisher KPP misc Asymptotic analysis misc Exponential speed of propagation misc Perturbed test function |
topic_browse |
ddc 510 ssgn 17,1 misc Non-local fractional operator misc Fisher KPP misc Asymptotic analysis misc Exponential speed of propagation misc Perturbed test function |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of dynamics and differential equations |
hierarchy_parent_id |
165666455 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of dynamics and differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 |
title |
Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment |
ctrlnum |
(DE-627)OLC212506555X (DE-He213)s10884-020-09837-4-p |
title_full |
Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment |
author_sort |
Léculier, Alexis |
journal |
Journal of dynamics and differential equations |
journalStr |
Journal of dynamics and differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
863 |
author_browse |
Léculier, Alexis Mirrahimi, Sepideh Roquejoffre, Jean-Michel |
container_volume |
33 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Léculier, Alexis |
doi_str_mv |
10.1007/s10884-020-09837-4 |
dewey-full |
510 |
title_sort |
propagation in a fractional reaction–diffusion equation in a periodically hostile environment |
title_auth |
Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment |
abstract |
Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_4126 |
container_issue |
2 |
title_short |
Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment |
url |
https://doi.org/10.1007/s10884-020-09837-4 |
remote_bool |
false |
author2 |
Mirrahimi, Sepideh Roquejoffre, Jean-Michel |
author2Str |
Mirrahimi, Sepideh Roquejoffre, Jean-Michel |
ppnlink |
165666455 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10884-020-09837-4 |
up_date |
2024-07-04T02:27:18.628Z |
_version_ |
1803613675066490880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC212506555X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505094952.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10884-020-09837-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC212506555X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10884-020-09837-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Léculier, Alexis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Propagation in a Fractional Reaction–Diffusion Equation in a Periodically Hostile Environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state $$n_+$$, we prove that it invades the unstable state zero exponentially fast in time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-local fractional operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fisher KPP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exponential speed of propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbed test function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirrahimi, Sepideh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roquejoffre, Jean-Michel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of dynamics and differential equations</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">33(2020), 2 vom: 19. März, Seite 863-890</subfield><subfield code="w">(DE-627)165666455</subfield><subfield code="w">(DE-600)1008261-X</subfield><subfield code="w">(DE-576)023042591</subfield><subfield code="x">1040-7294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:19</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:863-890</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10884-020-09837-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">19</subfield><subfield code="c">03</subfield><subfield code="h">863-890</subfield></datafield></record></collection>
|
score |
7.4014616 |