Quantum private comparison of size using d-level Bell states with a semi-honest third party
Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the tw...
Ausführliche Beschreibung
Autor*in: |
Wu, WanQing [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Quantum information processing - Springer US, 2002, 20(2021), 4 vom: Apr. |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2021 ; number:4 ; month:04 |
Links: |
---|
DOI / URN: |
10.1007/s11128-021-03059-3 |
---|
Katalog-ID: |
OLC2125098873 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2125098873 | ||
003 | DE-627 | ||
005 | 20230505101232.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11128-021-03059-3 |2 doi | |
035 | |a (DE-627)OLC2125098873 | ||
035 | |a (DE-He213)s11128-021-03059-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 33.23$jQuantenphysik |2 bkl | ||
084 | |a 54.10$jTheoretische Informatik |2 bkl | ||
100 | 1 | |a Wu, WanQing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum private comparison of size using d-level Bell states with a semi-honest third party |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. | ||
650 | 4 | |a Quantum cryptography | |
650 | 4 | |a Quantum private comparison | |
650 | 4 | |a Bell states | |
700 | 1 | |a Zhao, YongXin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Quantum information processing |d Springer US, 2002 |g 20(2021), 4 vom: Apr. |w (DE-627)489255752 |w (DE-600)2191523-4 |w (DE-576)9489255750 |x 1570-0755 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2021 |g number:4 |g month:04 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11128-021-03059-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
936 | b | k | |a 33.23$jQuantenphysik |q VZ |0 106407910 |0 (DE-625)106407910 |
936 | b | k | |a 54.10$jTheoretische Informatik |q VZ |0 106418815 |0 (DE-625)106418815 |
951 | |a AR | ||
952 | |d 20 |j 2021 |e 4 |c 04 |
author_variant |
w w ww y z yz |
---|---|
matchkey_str |
article:15700755:2021----::unupiaeoprsnfiesndeeblsaewta |
hierarchy_sort_str |
2021 |
bklnumber |
33.23$jQuantenphysik 54.10$jTheoretische Informatik |
publishDate |
2021 |
allfields |
10.1007/s11128-021-03059-3 doi (DE-627)OLC2125098873 (DE-He213)s11128-021-03059-3-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Wu, WanQing verfasserin aut Quantum private comparison of size using d-level Bell states with a semi-honest third party 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. Quantum cryptography Quantum private comparison Bell states Zhao, YongXin aut Enthalten in Quantum information processing Springer US, 2002 20(2021), 4 vom: Apr. (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:20 year:2021 number:4 month:04 https://doi.org/10.1007/s11128-021-03059-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 20 2021 4 04 |
spelling |
10.1007/s11128-021-03059-3 doi (DE-627)OLC2125098873 (DE-He213)s11128-021-03059-3-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Wu, WanQing verfasserin aut Quantum private comparison of size using d-level Bell states with a semi-honest third party 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. Quantum cryptography Quantum private comparison Bell states Zhao, YongXin aut Enthalten in Quantum information processing Springer US, 2002 20(2021), 4 vom: Apr. (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:20 year:2021 number:4 month:04 https://doi.org/10.1007/s11128-021-03059-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 20 2021 4 04 |
allfields_unstemmed |
10.1007/s11128-021-03059-3 doi (DE-627)OLC2125098873 (DE-He213)s11128-021-03059-3-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Wu, WanQing verfasserin aut Quantum private comparison of size using d-level Bell states with a semi-honest third party 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. Quantum cryptography Quantum private comparison Bell states Zhao, YongXin aut Enthalten in Quantum information processing Springer US, 2002 20(2021), 4 vom: Apr. (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:20 year:2021 number:4 month:04 https://doi.org/10.1007/s11128-021-03059-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 20 2021 4 04 |
allfieldsGer |
10.1007/s11128-021-03059-3 doi (DE-627)OLC2125098873 (DE-He213)s11128-021-03059-3-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Wu, WanQing verfasserin aut Quantum private comparison of size using d-level Bell states with a semi-honest third party 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. Quantum cryptography Quantum private comparison Bell states Zhao, YongXin aut Enthalten in Quantum information processing Springer US, 2002 20(2021), 4 vom: Apr. (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:20 year:2021 number:4 month:04 https://doi.org/10.1007/s11128-021-03059-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 20 2021 4 04 |
allfieldsSound |
10.1007/s11128-021-03059-3 doi (DE-627)OLC2125098873 (DE-He213)s11128-021-03059-3-p DE-627 ger DE-627 rakwb eng 004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Wu, WanQing verfasserin aut Quantum private comparison of size using d-level Bell states with a semi-honest third party 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. Quantum cryptography Quantum private comparison Bell states Zhao, YongXin aut Enthalten in Quantum information processing Springer US, 2002 20(2021), 4 vom: Apr. (DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 1570-0755 nnns volume:20 year:2021 number:4 month:04 https://doi.org/10.1007/s11128-021-03059-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 33.23$jQuantenphysik VZ 106407910 (DE-625)106407910 54.10$jTheoretische Informatik VZ 106418815 (DE-625)106418815 AR 20 2021 4 04 |
language |
English |
source |
Enthalten in Quantum information processing 20(2021), 4 vom: Apr. volume:20 year:2021 number:4 month:04 |
sourceStr |
Enthalten in Quantum information processing 20(2021), 4 vom: Apr. volume:20 year:2021 number:4 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum cryptography Quantum private comparison Bell states |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Quantum information processing |
authorswithroles_txt_mv |
Wu, WanQing @@aut@@ Zhao, YongXin @@aut@@ |
publishDateDaySort_date |
2021-04-01T00:00:00Z |
hierarchy_top_id |
489255752 |
dewey-sort |
14 |
id |
OLC2125098873 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2125098873</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505101232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11128-021-03059-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2125098873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11128-021-03059-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, WanQing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum private comparison of size using d-level Bell states with a semi-honest third party</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum cryptography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum private comparison</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bell states</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, YongXin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quantum information processing</subfield><subfield code="d">Springer US, 2002</subfield><subfield code="g">20(2021), 4 vom: Apr.</subfield><subfield code="w">(DE-627)489255752</subfield><subfield code="w">(DE-600)2191523-4</subfield><subfield code="w">(DE-576)9489255750</subfield><subfield code="x">1570-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11128-021-03059-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="q">VZ</subfield><subfield code="0">106407910</subfield><subfield code="0">(DE-625)106407910</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418815</subfield><subfield code="0">(DE-625)106418815</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Wu, WanQing |
spellingShingle |
Wu, WanQing ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum cryptography misc Quantum private comparison misc Bell states Quantum private comparison of size using d-level Bell states with a semi-honest third party |
authorStr |
Wu, WanQing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)489255752 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1570-0755 |
topic_title |
004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl Quantum private comparison of size using d-level Bell states with a semi-honest third party Quantum cryptography Quantum private comparison Bell states |
topic |
ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum cryptography misc Quantum private comparison misc Bell states |
topic_unstemmed |
ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum cryptography misc Quantum private comparison misc Bell states |
topic_browse |
ddc 004 bkl 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik misc Quantum cryptography misc Quantum private comparison misc Bell states |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Quantum information processing |
hierarchy_parent_id |
489255752 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Quantum information processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)489255752 (DE-600)2191523-4 (DE-576)9489255750 |
title |
Quantum private comparison of size using d-level Bell states with a semi-honest third party |
ctrlnum |
(DE-627)OLC2125098873 (DE-He213)s11128-021-03059-3-p |
title_full |
Quantum private comparison of size using d-level Bell states with a semi-honest third party |
author_sort |
Wu, WanQing |
journal |
Quantum information processing |
journalStr |
Quantum information processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Wu, WanQing Zhao, YongXin |
container_volume |
20 |
class |
004 VZ 33.23$jQuantenphysik bkl 54.10$jTheoretische Informatik bkl |
format_se |
Aufsätze |
author-letter |
Wu, WanQing |
doi_str_mv |
10.1007/s11128-021-03059-3 |
normlink |
106407910 106418815 |
normlink_prefix_str_mv |
106407910 (DE-625)106407910 106418815 (DE-625)106418815 |
dewey-full |
004 |
title_sort |
quantum private comparison of size using d-level bell states with a semi-honest third party |
title_auth |
Quantum private comparison of size using d-level Bell states with a semi-honest third party |
abstract |
Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
4 |
title_short |
Quantum private comparison of size using d-level Bell states with a semi-honest third party |
url |
https://doi.org/10.1007/s11128-021-03059-3 |
remote_bool |
false |
author2 |
Zhao, YongXin |
author2Str |
Zhao, YongXin |
ppnlink |
489255752 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11128-021-03059-3 |
up_date |
2024-07-04T02:33:21.639Z |
_version_ |
1803614055711113216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2125098873</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505101232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11128-021-03059-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2125098873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11128-021-03059-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, WanQing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum private comparison of size using d-level Bell states with a semi-honest third party</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a quantum private comparison $$(\mathrm{QPC})$$ protocol based on Bell states. The presented protocol can determine not only whether two secrets are equal, but also the size relationship between them. The proposed protocol can secretly compare information of the two participants with the help of a third party $$(\mathrm{TP})$$. The proposed protocol has adopted quantum transmission strategy and the decoy state photons to prevent various types of Eve attacks and participant attacks. It is shown that the protocol is secure in theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum cryptography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum private comparison</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bell states</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, YongXin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quantum information processing</subfield><subfield code="d">Springer US, 2002</subfield><subfield code="g">20(2021), 4 vom: Apr.</subfield><subfield code="w">(DE-627)489255752</subfield><subfield code="w">(DE-600)2191523-4</subfield><subfield code="w">(DE-576)9489255750</subfield><subfield code="x">1570-0755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11128-021-03059-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.23$jQuantenphysik</subfield><subfield code="q">VZ</subfield><subfield code="0">106407910</subfield><subfield code="0">(DE-625)106407910</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.10$jTheoretische Informatik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418815</subfield><subfield code="0">(DE-625)106418815</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4018974 |