A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem
Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective...
Ausführliche Beschreibung
Autor*in: |
Chagas, Jonatas B. C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of heuristics - Springer US, 1995, 27(2020), 3 vom: 20. Sept., Seite 267-301 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2020 ; number:3 ; day:20 ; month:09 ; pages:267-301 |
Links: |
---|
DOI / URN: |
10.1007/s10732-020-09457-7 |
---|
Katalog-ID: |
OLC2125592460 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2125592460 | ||
003 | DE-627 | ||
005 | 20230505103818.0 | ||
007 | tu | ||
008 | 230505s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10732-020-09457-7 |2 doi | |
035 | |a (DE-627)OLC2125592460 | ||
035 | |a (DE-He213)s10732-020-09457-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 3,2 |a 24 |2 ssgn | ||
100 | 1 | |a Chagas, Jonatas B. C. |e verfasserin |0 (orcid)0000-0001-7965-8419 |4 aut | |
245 | 1 | 0 | |a A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. | ||
650 | 4 | |a Combinatorial optimization | |
650 | 4 | |a Multi-objective optimization | |
650 | 4 | |a Real-world optimization problem | |
650 | 4 | |a Traveling thief problem | |
650 | 4 | |a NSGA-II | |
700 | 1 | |a Blank, Julian |0 (orcid)0000-0002-2227-6476 |4 aut | |
700 | 1 | |a Wagner, Markus |0 (orcid)0000-0002-3124-0061 |4 aut | |
700 | 1 | |a Souza, Marcone J. F. |0 (orcid)0000-0002-7141-357X |4 aut | |
700 | 1 | |a Deb, Kalyanmoy |0 (orcid)0000-0001-7402-9939 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of heuristics |d Springer US, 1995 |g 27(2020), 3 vom: 20. Sept., Seite 267-301 |w (DE-627)215140281 |w (DE-600)1333974-6 |w (DE-576)063244721 |x 1381-1231 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2020 |g number:3 |g day:20 |g month:09 |g pages:267-301 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10732-020-09457-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2108 | ||
951 | |a AR | ||
952 | |d 27 |j 2020 |e 3 |b 20 |c 09 |h 267-301 |
author_variant |
j b c c jbc jbcc j b jb m w mw m j f s mjf mjfs k d kd |
---|---|
matchkey_str |
article:13811231:2020----::nnoiaesrigaecsoiernokyeeiagrtmoteibe |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10732-020-09457-7 doi (DE-627)OLC2125592460 (DE-He213)s10732-020-09457-7-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II Blank, Julian (orcid)0000-0002-2227-6476 aut Wagner, Markus (orcid)0000-0002-3124-0061 aut Souza, Marcone J. F. (orcid)0000-0002-7141-357X aut Deb, Kalyanmoy (orcid)0000-0001-7402-9939 aut Enthalten in Journal of heuristics Springer US, 1995 27(2020), 3 vom: 20. Sept., Seite 267-301 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:27 year:2020 number:3 day:20 month:09 pages:267-301 https://doi.org/10.1007/s10732-020-09457-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2108 AR 27 2020 3 20 09 267-301 |
spelling |
10.1007/s10732-020-09457-7 doi (DE-627)OLC2125592460 (DE-He213)s10732-020-09457-7-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II Blank, Julian (orcid)0000-0002-2227-6476 aut Wagner, Markus (orcid)0000-0002-3124-0061 aut Souza, Marcone J. F. (orcid)0000-0002-7141-357X aut Deb, Kalyanmoy (orcid)0000-0001-7402-9939 aut Enthalten in Journal of heuristics Springer US, 1995 27(2020), 3 vom: 20. Sept., Seite 267-301 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:27 year:2020 number:3 day:20 month:09 pages:267-301 https://doi.org/10.1007/s10732-020-09457-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2108 AR 27 2020 3 20 09 267-301 |
allfields_unstemmed |
10.1007/s10732-020-09457-7 doi (DE-627)OLC2125592460 (DE-He213)s10732-020-09457-7-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II Blank, Julian (orcid)0000-0002-2227-6476 aut Wagner, Markus (orcid)0000-0002-3124-0061 aut Souza, Marcone J. F. (orcid)0000-0002-7141-357X aut Deb, Kalyanmoy (orcid)0000-0001-7402-9939 aut Enthalten in Journal of heuristics Springer US, 1995 27(2020), 3 vom: 20. Sept., Seite 267-301 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:27 year:2020 number:3 day:20 month:09 pages:267-301 https://doi.org/10.1007/s10732-020-09457-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2108 AR 27 2020 3 20 09 267-301 |
allfieldsGer |
10.1007/s10732-020-09457-7 doi (DE-627)OLC2125592460 (DE-He213)s10732-020-09457-7-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II Blank, Julian (orcid)0000-0002-2227-6476 aut Wagner, Markus (orcid)0000-0002-3124-0061 aut Souza, Marcone J. F. (orcid)0000-0002-7141-357X aut Deb, Kalyanmoy (orcid)0000-0001-7402-9939 aut Enthalten in Journal of heuristics Springer US, 1995 27(2020), 3 vom: 20. Sept., Seite 267-301 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:27 year:2020 number:3 day:20 month:09 pages:267-301 https://doi.org/10.1007/s10732-020-09457-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2108 AR 27 2020 3 20 09 267-301 |
allfieldsSound |
10.1007/s10732-020-09457-7 doi (DE-627)OLC2125592460 (DE-He213)s10732-020-09457-7-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II Blank, Julian (orcid)0000-0002-2227-6476 aut Wagner, Markus (orcid)0000-0002-3124-0061 aut Souza, Marcone J. F. (orcid)0000-0002-7141-357X aut Deb, Kalyanmoy (orcid)0000-0001-7402-9939 aut Enthalten in Journal of heuristics Springer US, 1995 27(2020), 3 vom: 20. Sept., Seite 267-301 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:27 year:2020 number:3 day:20 month:09 pages:267-301 https://doi.org/10.1007/s10732-020-09457-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2108 AR 27 2020 3 20 09 267-301 |
language |
English |
source |
Enthalten in Journal of heuristics 27(2020), 3 vom: 20. Sept., Seite 267-301 volume:27 year:2020 number:3 day:20 month:09 pages:267-301 |
sourceStr |
Enthalten in Journal of heuristics 27(2020), 3 vom: 20. Sept., Seite 267-301 volume:27 year:2020 number:3 day:20 month:09 pages:267-301 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of heuristics |
authorswithroles_txt_mv |
Chagas, Jonatas B. C. @@aut@@ Blank, Julian @@aut@@ Wagner, Markus @@aut@@ Souza, Marcone J. F. @@aut@@ Deb, Kalyanmoy @@aut@@ |
publishDateDaySort_date |
2020-09-20T00:00:00Z |
hierarchy_top_id |
215140281 |
dewey-sort |
3510 |
id |
OLC2125592460 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2125592460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505103818.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10732-020-09457-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2125592460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10732-020-09457-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="a">24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chagas, Jonatas B. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7965-8419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-world optimization problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling thief problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NSGA-II</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blank, Julian</subfield><subfield code="0">(orcid)0000-0002-2227-6476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagner, Markus</subfield><subfield code="0">(orcid)0000-0002-3124-0061</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souza, Marcone J. F.</subfield><subfield code="0">(orcid)0000-0002-7141-357X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deb, Kalyanmoy</subfield><subfield code="0">(orcid)0000-0001-7402-9939</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of heuristics</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">27(2020), 3 vom: 20. Sept., Seite 267-301</subfield><subfield code="w">(DE-627)215140281</subfield><subfield code="w">(DE-600)1333974-6</subfield><subfield code="w">(DE-576)063244721</subfield><subfield code="x">1381-1231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:20</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:267-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10732-020-09457-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">20</subfield><subfield code="c">09</subfield><subfield code="h">267-301</subfield></datafield></record></collection>
|
author |
Chagas, Jonatas B. C. |
spellingShingle |
Chagas, Jonatas B. C. ddc 510 ssgn 3,2 misc Combinatorial optimization misc Multi-objective optimization misc Real-world optimization problem misc Traveling thief problem misc NSGA-II A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
authorStr |
Chagas, Jonatas B. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)215140281 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1381-1231 |
topic_title |
510 VZ 3,2 24 ssgn A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem Combinatorial optimization Multi-objective optimization Real-world optimization problem Traveling thief problem NSGA-II |
topic |
ddc 510 ssgn 3,2 misc Combinatorial optimization misc Multi-objective optimization misc Real-world optimization problem misc Traveling thief problem misc NSGA-II |
topic_unstemmed |
ddc 510 ssgn 3,2 misc Combinatorial optimization misc Multi-objective optimization misc Real-world optimization problem misc Traveling thief problem misc NSGA-II |
topic_browse |
ddc 510 ssgn 3,2 misc Combinatorial optimization misc Multi-objective optimization misc Real-world optimization problem misc Traveling thief problem misc NSGA-II |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of heuristics |
hierarchy_parent_id |
215140281 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of heuristics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 |
title |
A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
ctrlnum |
(DE-627)OLC2125592460 (DE-He213)s10732-020-09457-7-p |
title_full |
A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
author_sort |
Chagas, Jonatas B. C. |
journal |
Journal of heuristics |
journalStr |
Journal of heuristics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
267 |
author_browse |
Chagas, Jonatas B. C. Blank, Julian Wagner, Markus Souza, Marcone J. F. Deb, Kalyanmoy |
container_volume |
27 |
class |
510 VZ 3,2 24 ssgn |
format_se |
Aufsätze |
author-letter |
Chagas, Jonatas B. C. |
doi_str_mv |
10.1007/s10732-020-09457-7 |
normlink |
(ORCID)0000-0001-7965-8419 (ORCID)0000-0002-2227-6476 (ORCID)0000-0002-3124-0061 (ORCID)0000-0002-7141-357X (ORCID)0000-0001-7402-9939 |
normlink_prefix_str_mv |
(orcid)0000-0001-7965-8419 (orcid)0000-0002-2227-6476 (orcid)0000-0002-3124-0061 (orcid)0000-0002-7141-357X (orcid)0000-0001-7402-9939 |
dewey-full |
510 |
title_sort |
a non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
title_auth |
A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
abstract |
Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2108 |
container_issue |
3 |
title_short |
A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem |
url |
https://doi.org/10.1007/s10732-020-09457-7 |
remote_bool |
false |
author2 |
Blank, Julian Wagner, Markus Souza, Marcone J. F. Deb, Kalyanmoy |
author2Str |
Blank, Julian Wagner, Markus Souza, Marcone J. F. Deb, Kalyanmoy |
ppnlink |
215140281 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10732-020-09457-7 |
up_date |
2024-07-04T04:13:52.556Z |
_version_ |
1803620379585937408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2125592460</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505103818.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10732-020-09457-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2125592460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10732-020-09457-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="a">24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chagas, Jonatas B. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7965-8419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a method to solve a bi-objective variant of the well-studied traveling thief problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: traveling salesman problem and knapsack problem. We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real-world optimization problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling thief problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NSGA-II</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blank, Julian</subfield><subfield code="0">(orcid)0000-0002-2227-6476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagner, Markus</subfield><subfield code="0">(orcid)0000-0002-3124-0061</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souza, Marcone J. F.</subfield><subfield code="0">(orcid)0000-0002-7141-357X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deb, Kalyanmoy</subfield><subfield code="0">(orcid)0000-0001-7402-9939</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of heuristics</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">27(2020), 3 vom: 20. Sept., Seite 267-301</subfield><subfield code="w">(DE-627)215140281</subfield><subfield code="w">(DE-600)1333974-6</subfield><subfield code="w">(DE-576)063244721</subfield><subfield code="x">1381-1231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">day:20</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:267-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10732-020-09457-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="b">20</subfield><subfield code="c">09</subfield><subfield code="h">267-301</subfield></datafield></record></collection>
|
score |
7.398164 |