The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities
Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We stud...
Ausführliche Beschreibung
Autor*in: |
Shojaei-Fard, Ali [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Combinatorial Dyson–Schwinger equations |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical physics, analysis and geometry - Springer Netherlands, 1998, 24(2021), 2 vom: 20. Mai |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2021 ; number:2 ; day:20 ; month:05 |
Links: |
---|
DOI / URN: |
10.1007/s11040-021-09389-z |
---|
Katalog-ID: |
OLC2125594765 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2125594765 | ||
003 | DE-627 | ||
005 | 20240827213946.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11040-021-09389-z |2 doi | |
035 | |a (DE-627)OLC2125594765 | ||
035 | |a (DE-He213)s11040-021-09389-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.40$jAnalysis: Allgemeines |2 bkl | ||
084 | |a 31.50$jGeometrie: Allgemeines |2 bkl | ||
084 | |a 33.06$jMathematische Methoden der Physik |2 bkl | ||
100 | 1 | |a Shojaei-Fard, Ali |e verfasserin |0 (orcid)0000-0002-6418-3227 |4 aut | |
245 | 1 | 0 | |a The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2021 | ||
520 | |a Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. | ||
650 | 4 | |a Combinatorial Dyson–Schwinger equations | |
650 | 4 | |a Feynman graphons | |
650 | 4 | |a Homomorphism densities of graphons | |
650 | 4 | |a Non-perturbative QFT | |
650 | 4 | |a Taylor series | |
773 | 0 | 8 | |i Enthalten in |t Mathematical physics, analysis and geometry |d Springer Netherlands, 1998 |g 24(2021), 2 vom: 20. Mai |w (DE-627)300830831 |w (DE-600)1484000-5 |w (DE-576)091204909 |x 1385-0172 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2021 |g number:2 |g day:20 |g month:05 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11040-021-09389-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 31.40$jAnalysis: Allgemeines |q VZ |0 106423258 |0 (DE-625)106423258 |
936 | b | k | |a 31.50$jGeometrie: Allgemeines |q VZ |0 106408127 |0 (DE-625)106408127 |
936 | b | k | |a 33.06$jMathematische Methoden der Physik |q VZ |0 106407937 |0 (DE-625)106407937 |
951 | |a AR | ||
952 | |d 24 |j 2021 |e 2 |b 20 |c 05 |
author_variant |
a s f asf |
---|---|
matchkey_str |
article:13850172:2021----::haayieouinfyoshigrqainvao |
hierarchy_sort_str |
2021 |
bklnumber |
31.40$jAnalysis: Allgemeines 31.50$jGeometrie: Allgemeines 33.06$jMathematische Methoden der Physik |
publishDate |
2021 |
allfields |
10.1007/s11040-021-09389-z doi (DE-627)OLC2125594765 (DE-He213)s11040-021-09389-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl Shojaei-Fard, Ali verfasserin (orcid)0000-0002-6418-3227 aut The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series Enthalten in Mathematical physics, analysis and geometry Springer Netherlands, 1998 24(2021), 2 vom: 20. Mai (DE-627)300830831 (DE-600)1484000-5 (DE-576)091204909 1385-0172 nnns volume:24 year:2021 number:2 day:20 month:05 https://doi.org/10.1007/s11040-021-09389-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.40$jAnalysis: Allgemeines VZ 106423258 (DE-625)106423258 31.50$jGeometrie: Allgemeines VZ 106408127 (DE-625)106408127 33.06$jMathematische Methoden der Physik VZ 106407937 (DE-625)106407937 AR 24 2021 2 20 05 |
spelling |
10.1007/s11040-021-09389-z doi (DE-627)OLC2125594765 (DE-He213)s11040-021-09389-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl Shojaei-Fard, Ali verfasserin (orcid)0000-0002-6418-3227 aut The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series Enthalten in Mathematical physics, analysis and geometry Springer Netherlands, 1998 24(2021), 2 vom: 20. Mai (DE-627)300830831 (DE-600)1484000-5 (DE-576)091204909 1385-0172 nnns volume:24 year:2021 number:2 day:20 month:05 https://doi.org/10.1007/s11040-021-09389-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.40$jAnalysis: Allgemeines VZ 106423258 (DE-625)106423258 31.50$jGeometrie: Allgemeines VZ 106408127 (DE-625)106408127 33.06$jMathematische Methoden der Physik VZ 106407937 (DE-625)106407937 AR 24 2021 2 20 05 |
allfields_unstemmed |
10.1007/s11040-021-09389-z doi (DE-627)OLC2125594765 (DE-He213)s11040-021-09389-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl Shojaei-Fard, Ali verfasserin (orcid)0000-0002-6418-3227 aut The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series Enthalten in Mathematical physics, analysis and geometry Springer Netherlands, 1998 24(2021), 2 vom: 20. Mai (DE-627)300830831 (DE-600)1484000-5 (DE-576)091204909 1385-0172 nnns volume:24 year:2021 number:2 day:20 month:05 https://doi.org/10.1007/s11040-021-09389-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.40$jAnalysis: Allgemeines VZ 106423258 (DE-625)106423258 31.50$jGeometrie: Allgemeines VZ 106408127 (DE-625)106408127 33.06$jMathematische Methoden der Physik VZ 106407937 (DE-625)106407937 AR 24 2021 2 20 05 |
allfieldsGer |
10.1007/s11040-021-09389-z doi (DE-627)OLC2125594765 (DE-He213)s11040-021-09389-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl Shojaei-Fard, Ali verfasserin (orcid)0000-0002-6418-3227 aut The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series Enthalten in Mathematical physics, analysis and geometry Springer Netherlands, 1998 24(2021), 2 vom: 20. Mai (DE-627)300830831 (DE-600)1484000-5 (DE-576)091204909 1385-0172 nnns volume:24 year:2021 number:2 day:20 month:05 https://doi.org/10.1007/s11040-021-09389-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.40$jAnalysis: Allgemeines VZ 106423258 (DE-625)106423258 31.50$jGeometrie: Allgemeines VZ 106408127 (DE-625)106408127 33.06$jMathematische Methoden der Physik VZ 106407937 (DE-625)106407937 AR 24 2021 2 20 05 |
allfieldsSound |
10.1007/s11040-021-09389-z doi (DE-627)OLC2125594765 (DE-He213)s11040-021-09389-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl Shojaei-Fard, Ali verfasserin (orcid)0000-0002-6418-3227 aut The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series Enthalten in Mathematical physics, analysis and geometry Springer Netherlands, 1998 24(2021), 2 vom: 20. Mai (DE-627)300830831 (DE-600)1484000-5 (DE-576)091204909 1385-0172 nnns volume:24 year:2021 number:2 day:20 month:05 https://doi.org/10.1007/s11040-021-09389-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.40$jAnalysis: Allgemeines VZ 106423258 (DE-625)106423258 31.50$jGeometrie: Allgemeines VZ 106408127 (DE-625)106408127 33.06$jMathematische Methoden der Physik VZ 106407937 (DE-625)106407937 AR 24 2021 2 20 05 |
language |
English |
source |
Enthalten in Mathematical physics, analysis and geometry 24(2021), 2 vom: 20. Mai volume:24 year:2021 number:2 day:20 month:05 |
sourceStr |
Enthalten in Mathematical physics, analysis and geometry 24(2021), 2 vom: 20. Mai volume:24 year:2021 number:2 day:20 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematical physics, analysis and geometry |
authorswithroles_txt_mv |
Shojaei-Fard, Ali @@aut@@ |
publishDateDaySort_date |
2021-05-20T00:00:00Z |
hierarchy_top_id |
300830831 |
dewey-sort |
3510 |
id |
OLC2125594765 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2125594765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827213946.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11040-021-09389-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2125594765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11040-021-09389-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40$jAnalysis: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.50$jGeometrie: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.06$jMathematische Methoden der Physik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shojaei-Fard, Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6418-3227</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial Dyson–Schwinger equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman graphons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homomorphism densities of graphons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-perturbative QFT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor series</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical physics, analysis and geometry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">24(2021), 2 vom: 20. Mai</subfield><subfield code="w">(DE-627)300830831</subfield><subfield code="w">(DE-600)1484000-5</subfield><subfield code="w">(DE-576)091204909</subfield><subfield code="x">1385-0172</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11040-021-09389-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.40$jAnalysis: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106423258</subfield><subfield code="0">(DE-625)106423258</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.50$jGeometrie: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106408127</subfield><subfield code="0">(DE-625)106408127</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.06$jMathematische Methoden der Physik</subfield><subfield code="q">VZ</subfield><subfield code="0">106407937</subfield><subfield code="0">(DE-625)106407937</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Shojaei-Fard, Ali |
spellingShingle |
Shojaei-Fard, Ali ddc 510 ssgn 17,1 bkl 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik misc Combinatorial Dyson–Schwinger equations misc Feynman graphons misc Homomorphism densities of graphons misc Non-perturbative QFT misc Taylor series The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities |
authorStr |
Shojaei-Fard, Ali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300830831 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1385-0172 |
topic_title |
510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities Combinatorial Dyson–Schwinger equations Feynman graphons Homomorphism densities of graphons Non-perturbative QFT Taylor series |
topic |
ddc 510 ssgn 17,1 bkl 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik misc Combinatorial Dyson–Schwinger equations misc Feynman graphons misc Homomorphism densities of graphons misc Non-perturbative QFT misc Taylor series |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik misc Combinatorial Dyson–Schwinger equations misc Feynman graphons misc Homomorphism densities of graphons misc Non-perturbative QFT misc Taylor series |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik misc Combinatorial Dyson–Schwinger equations misc Feynman graphons misc Homomorphism densities of graphons misc Non-perturbative QFT misc Taylor series |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematical physics, analysis and geometry |
hierarchy_parent_id |
300830831 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematical physics, analysis and geometry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300830831 (DE-600)1484000-5 (DE-576)091204909 |
title |
The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities |
ctrlnum |
(DE-627)OLC2125594765 (DE-He213)s11040-021-09389-z-p |
title_full |
The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities |
author_sort |
Shojaei-Fard, Ali |
journal |
Mathematical physics, analysis and geometry |
journalStr |
Mathematical physics, analysis and geometry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Shojaei-Fard, Ali |
container_volume |
24 |
class |
510 VZ 17,1 ssgn 31.40$jAnalysis: Allgemeines bkl 31.50$jGeometrie: Allgemeines bkl 33.06$jMathematische Methoden der Physik bkl |
format_se |
Aufsätze |
author-letter |
Shojaei-Fard, Ali |
doi_str_mv |
10.1007/s11040-021-09389-z |
normlink |
(ORCID)0000-0002-6418-3227 106423258 106408127 106407937 |
normlink_prefix_str_mv |
(orcid)0000-0002-6418-3227 106423258 (DE-625)106423258 106408127 (DE-625)106408127 106407937 (DE-625)106407937 |
dewey-full |
510 |
title_sort |
the analytic evolution of dyson–schwinger equations via homomorphism densities |
title_auth |
The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities |
abstract |
Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstractGer |
Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstract_unstemmed |
Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
2 |
title_short |
The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities |
url |
https://doi.org/10.1007/s11040-021-09389-z |
remote_bool |
false |
ppnlink |
300830831 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11040-021-09389-z |
up_date |
2024-08-27T23:10:38.054Z |
_version_ |
1808584134419808256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2125594765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827213946.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11040-021-09389-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2125594765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11040-021-09389-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40$jAnalysis: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.50$jGeometrie: Allgemeines</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.06$jMathematische Methoden der Physik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shojaei-Fard, Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6418-3227</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Analytic Evolution of Dyson–Schwinger Equations via Homomorphism Densities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory Φ with the bare coupling constant g. We study the Gâteaux differential calculus on the space of functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ in terms of a new class of homomorphism densities. We then show that Taylor series representations of smooth functionals on $\mathcal {S}^{\Phi ,g}_{\approx }$ provide a new analytic description for solutions of combinatorial Dyson–Schwinger equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial Dyson–Schwinger equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman graphons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homomorphism densities of graphons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-perturbative QFT</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor series</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical physics, analysis and geometry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">24(2021), 2 vom: 20. Mai</subfield><subfield code="w">(DE-627)300830831</subfield><subfield code="w">(DE-600)1484000-5</subfield><subfield code="w">(DE-576)091204909</subfield><subfield code="x">1385-0172</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11040-021-09389-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.40$jAnalysis: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106423258</subfield><subfield code="0">(DE-625)106423258</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.50$jGeometrie: Allgemeines</subfield><subfield code="q">VZ</subfield><subfield code="0">106408127</subfield><subfield code="0">(DE-625)106408127</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.06$jMathematische Methoden der Physik</subfield><subfield code="q">VZ</subfield><subfield code="0">106407937</subfield><subfield code="0">(DE-625)106407937</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.170144 |