Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method
Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition gu...
Ausführliche Beschreibung
Autor*in: |
Zhu, Daoli [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Level-set subdifferential error bound |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Springer US, 1967, 189(2021), 3 vom: 31. Mai, Seite 889-918 |
---|---|
Übergeordnetes Werk: |
volume:189 ; year:2021 ; number:3 ; day:31 ; month:05 ; pages:889-918 |
Links: |
---|
DOI / URN: |
10.1007/s10957-021-01865-4 |
---|
Katalog-ID: |
OLC2126108708 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2126108708 | ||
003 | DE-627 | ||
005 | 20230505112015.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10957-021-01865-4 |2 doi | |
035 | |a (DE-627)OLC2126108708 | ||
035 | |a (DE-He213)s10957-021-01865-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Zhu, Daoli |e verfasserin |4 aut | |
245 | 1 | 0 | |a Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. | ||
650 | 4 | |a Level-set subdifferential error bound | |
650 | 4 | |a Variable Bregman proximal gradient method | |
650 | 4 | |a Linear convergence | |
650 | 4 | |a Bregman proximal error bound | |
700 | 1 | |a Deng, Sien |0 (orcid)0000-0003-3453-6121 |4 aut | |
700 | 1 | |a Li, Minghua |4 aut | |
700 | 1 | |a Zhao, Lei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Springer US, 1967 |g 189(2021), 3 vom: 31. Mai, Seite 889-918 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:189 |g year:2021 |g number:3 |g day:31 |g month:05 |g pages:889-918 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10957-021-01865-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2030 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 189 |j 2021 |e 3 |b 31 |c 05 |h 889-918 |
author_variant |
d z dz s d sd m l ml l z lz |
---|---|
matchkey_str |
article:00223239:2021----::eestudfeetaerronsnlnacnegnefrga |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10957-021-01865-4 doi (DE-627)OLC2126108708 (DE-He213)s10957-021-01865-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Zhu, Daoli verfasserin aut Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound Deng, Sien (orcid)0000-0003-3453-6121 aut Li, Minghua aut Zhao, Lei aut Enthalten in Journal of optimization theory and applications Springer US, 1967 189(2021), 3 vom: 31. Mai, Seite 889-918 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:189 year:2021 number:3 day:31 month:05 pages:889-918 https://doi.org/10.1007/s10957-021-01865-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2030 SA 6420 SA 6420 AR 189 2021 3 31 05 889-918 |
spelling |
10.1007/s10957-021-01865-4 doi (DE-627)OLC2126108708 (DE-He213)s10957-021-01865-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Zhu, Daoli verfasserin aut Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound Deng, Sien (orcid)0000-0003-3453-6121 aut Li, Minghua aut Zhao, Lei aut Enthalten in Journal of optimization theory and applications Springer US, 1967 189(2021), 3 vom: 31. Mai, Seite 889-918 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:189 year:2021 number:3 day:31 month:05 pages:889-918 https://doi.org/10.1007/s10957-021-01865-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2030 SA 6420 SA 6420 AR 189 2021 3 31 05 889-918 |
allfields_unstemmed |
10.1007/s10957-021-01865-4 doi (DE-627)OLC2126108708 (DE-He213)s10957-021-01865-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Zhu, Daoli verfasserin aut Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound Deng, Sien (orcid)0000-0003-3453-6121 aut Li, Minghua aut Zhao, Lei aut Enthalten in Journal of optimization theory and applications Springer US, 1967 189(2021), 3 vom: 31. Mai, Seite 889-918 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:189 year:2021 number:3 day:31 month:05 pages:889-918 https://doi.org/10.1007/s10957-021-01865-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2030 SA 6420 SA 6420 AR 189 2021 3 31 05 889-918 |
allfieldsGer |
10.1007/s10957-021-01865-4 doi (DE-627)OLC2126108708 (DE-He213)s10957-021-01865-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Zhu, Daoli verfasserin aut Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound Deng, Sien (orcid)0000-0003-3453-6121 aut Li, Minghua aut Zhao, Lei aut Enthalten in Journal of optimization theory and applications Springer US, 1967 189(2021), 3 vom: 31. Mai, Seite 889-918 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:189 year:2021 number:3 day:31 month:05 pages:889-918 https://doi.org/10.1007/s10957-021-01865-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2030 SA 6420 SA 6420 AR 189 2021 3 31 05 889-918 |
allfieldsSound |
10.1007/s10957-021-01865-4 doi (DE-627)OLC2126108708 (DE-He213)s10957-021-01865-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Zhu, Daoli verfasserin aut Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound Deng, Sien (orcid)0000-0003-3453-6121 aut Li, Minghua aut Zhao, Lei aut Enthalten in Journal of optimization theory and applications Springer US, 1967 189(2021), 3 vom: 31. Mai, Seite 889-918 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:189 year:2021 number:3 day:31 month:05 pages:889-918 https://doi.org/10.1007/s10957-021-01865-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2030 SA 6420 SA 6420 AR 189 2021 3 31 05 889-918 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 189(2021), 3 vom: 31. Mai, Seite 889-918 volume:189 year:2021 number:3 day:31 month:05 pages:889-918 |
sourceStr |
Enthalten in Journal of optimization theory and applications 189(2021), 3 vom: 31. Mai, Seite 889-918 volume:189 year:2021 number:3 day:31 month:05 pages:889-918 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Zhu, Daoli @@aut@@ Deng, Sien @@aut@@ Li, Minghua @@aut@@ Zhao, Lei @@aut@@ |
publishDateDaySort_date |
2021-05-31T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC2126108708 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126108708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505112015.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-021-01865-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126108708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-021-01865-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Daoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level-set subdifferential error bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable Bregman proximal gradient method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bregman proximal error bound</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Sien</subfield><subfield code="0">(orcid)0000-0003-3453-6121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Minghua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">189(2021), 3 vom: 31. Mai, Seite 889-918</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:189</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:889-918</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-021-01865-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">189</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield><subfield code="h">889-918</subfield></datafield></record></collection>
|
author |
Zhu, Daoli |
spellingShingle |
Zhu, Daoli ddc 330 ssgn 17,1 rvk SA 6420 misc Level-set subdifferential error bound misc Variable Bregman proximal gradient method misc Linear convergence misc Bregman proximal error bound Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method |
authorStr |
Zhu, Daoli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method Level-set subdifferential error bound Variable Bregman proximal gradient method Linear convergence Bregman proximal error bound |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 misc Level-set subdifferential error bound misc Variable Bregman proximal gradient method misc Linear convergence misc Bregman proximal error bound |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 misc Level-set subdifferential error bound misc Variable Bregman proximal gradient method misc Linear convergence misc Bregman proximal error bound |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 misc Level-set subdifferential error bound misc Variable Bregman proximal gradient method misc Linear convergence misc Bregman proximal error bound |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method |
ctrlnum |
(DE-627)OLC2126108708 (DE-He213)s10957-021-01865-4-p |
title_full |
Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method |
author_sort |
Zhu, Daoli |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
889 |
author_browse |
Zhu, Daoli Deng, Sien Li, Minghua Zhao, Lei |
container_volume |
189 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Zhu, Daoli |
doi_str_mv |
10.1007/s10957-021-01865-4 |
normlink |
(ORCID)0000-0003-3453-6121 |
normlink_prefix_str_mv |
(orcid)0000-0003-3453-6121 |
dewey-full |
330 510 000 |
title_sort |
level-set subdifferential error bounds and linear convergence of bregman proximal gradient method |
title_auth |
Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method |
abstract |
Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2030 |
container_issue |
3 |
title_short |
Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method |
url |
https://doi.org/10.1007/s10957-021-01865-4 |
remote_bool |
false |
author2 |
Deng, Sien Li, Minghua Zhao, Lei |
author2Str |
Deng, Sien Li, Minghua Zhao, Lei |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10957-021-01865-4 |
up_date |
2024-07-04T05:57:22.136Z |
_version_ |
1803626890790961152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126108708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505112015.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-021-01865-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126108708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-021-01865-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Daoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Level-set subdifferential error bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable Bregman proximal gradient method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bregman proximal error bound</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Sien</subfield><subfield code="0">(orcid)0000-0003-3453-6121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Minghua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">189(2021), 3 vom: 31. Mai, Seite 889-918</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:189</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:889-918</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-021-01865-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">189</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield><subfield code="h">889-918</subfield></datafield></record></collection>
|
score |
7.4010286 |