Chiral magnetic properties of QCD phase-diagram
Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees o...
Ausführliche Beschreibung
Autor*in: |
Tawfik, Abdel Nasser [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The European physical journal / A - Springer Berlin Heidelberg, 1998, 57(2021), 6 vom: Juni |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2021 ; number:6 ; month:06 |
Links: |
---|
DOI / URN: |
10.1140/epja/s10050-021-00501-z |
---|
Katalog-ID: |
OLC2126190579 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2126190579 | ||
003 | DE-627 | ||
005 | 20230505120355.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1140/epja/s10050-021-00501-z |2 doi | |
035 | |a (DE-627)OLC2126190579 | ||
035 | |a (DE-He213)s10050-021-00501-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Tawfik, Abdel Nasser |e verfasserin |0 (orcid)0000-0002-1679-0225 |4 aut | |
245 | 1 | 0 | |a Chiral magnetic properties of QCD phase-diagram |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. | ||
700 | 1 | |a Diab, Abdel Magied |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The European physical journal / A |d Springer Berlin Heidelberg, 1998 |g 57(2021), 6 vom: Juni |w (DE-627)239430387 |w (DE-600)1413603-X |w (DE-576)064448398 |x 1434-6001 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2021 |g number:6 |g month:06 |
856 | 4 | 1 | |u https://doi.org/10.1140/epja/s10050-021-00501-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
951 | |a AR | ||
952 | |d 57 |j 2021 |e 6 |c 06 |
author_variant |
a n t an ant a m d am amd |
---|---|
matchkey_str |
article:14346001:2021----::hrlantcrprisfcp |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1140/epja/s10050-021-00501-z doi (DE-627)OLC2126190579 (DE-He213)s10050-021-00501-z-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ Tawfik, Abdel Nasser verfasserin (orcid)0000-0002-1679-0225 aut Chiral magnetic properties of QCD phase-diagram 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. Diab, Abdel Magied aut Enthalten in The European physical journal / A Springer Berlin Heidelberg, 1998 57(2021), 6 vom: Juni (DE-627)239430387 (DE-600)1413603-X (DE-576)064448398 1434-6001 nnns volume:57 year:2021 number:6 month:06 https://doi.org/10.1140/epja/s10050-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 57 2021 6 06 |
spelling |
10.1140/epja/s10050-021-00501-z doi (DE-627)OLC2126190579 (DE-He213)s10050-021-00501-z-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ Tawfik, Abdel Nasser verfasserin (orcid)0000-0002-1679-0225 aut Chiral magnetic properties of QCD phase-diagram 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. Diab, Abdel Magied aut Enthalten in The European physical journal / A Springer Berlin Heidelberg, 1998 57(2021), 6 vom: Juni (DE-627)239430387 (DE-600)1413603-X (DE-576)064448398 1434-6001 nnns volume:57 year:2021 number:6 month:06 https://doi.org/10.1140/epja/s10050-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 57 2021 6 06 |
allfields_unstemmed |
10.1140/epja/s10050-021-00501-z doi (DE-627)OLC2126190579 (DE-He213)s10050-021-00501-z-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ Tawfik, Abdel Nasser verfasserin (orcid)0000-0002-1679-0225 aut Chiral magnetic properties of QCD phase-diagram 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. Diab, Abdel Magied aut Enthalten in The European physical journal / A Springer Berlin Heidelberg, 1998 57(2021), 6 vom: Juni (DE-627)239430387 (DE-600)1413603-X (DE-576)064448398 1434-6001 nnns volume:57 year:2021 number:6 month:06 https://doi.org/10.1140/epja/s10050-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 57 2021 6 06 |
allfieldsGer |
10.1140/epja/s10050-021-00501-z doi (DE-627)OLC2126190579 (DE-He213)s10050-021-00501-z-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ Tawfik, Abdel Nasser verfasserin (orcid)0000-0002-1679-0225 aut Chiral magnetic properties of QCD phase-diagram 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. Diab, Abdel Magied aut Enthalten in The European physical journal / A Springer Berlin Heidelberg, 1998 57(2021), 6 vom: Juni (DE-627)239430387 (DE-600)1413603-X (DE-576)064448398 1434-6001 nnns volume:57 year:2021 number:6 month:06 https://doi.org/10.1140/epja/s10050-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 57 2021 6 06 |
allfieldsSound |
10.1140/epja/s10050-021-00501-z doi (DE-627)OLC2126190579 (DE-He213)s10050-021-00501-z-p DE-627 ger DE-627 rakwb eng 530 VZ 530 VZ Tawfik, Abdel Nasser verfasserin (orcid)0000-0002-1679-0225 aut Chiral magnetic properties of QCD phase-diagram 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. Diab, Abdel Magied aut Enthalten in The European physical journal / A Springer Berlin Heidelberg, 1998 57(2021), 6 vom: Juni (DE-627)239430387 (DE-600)1413603-X (DE-576)064448398 1434-6001 nnns volume:57 year:2021 number:6 month:06 https://doi.org/10.1140/epja/s10050-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY AR 57 2021 6 06 |
language |
English |
source |
Enthalten in The European physical journal / A 57(2021), 6 vom: Juni volume:57 year:2021 number:6 month:06 |
sourceStr |
Enthalten in The European physical journal / A 57(2021), 6 vom: Juni volume:57 year:2021 number:6 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The European physical journal / A |
authorswithroles_txt_mv |
Tawfik, Abdel Nasser @@aut@@ Diab, Abdel Magied @@aut@@ |
publishDateDaySort_date |
2021-06-01T00:00:00Z |
hierarchy_top_id |
239430387 |
dewey-sort |
3530 |
id |
OLC2126190579 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126190579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505120355.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epja/s10050-021-00501-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126190579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10050-021-00501-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tawfik, Abdel Nasser</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1679-0225</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chiral magnetic properties of QCD phase-diagram</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diab, Abdel Magied</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal / A</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">57(2021), 6 vom: Juni</subfield><subfield code="w">(DE-627)239430387</subfield><subfield code="w">(DE-600)1413603-X</subfield><subfield code="w">(DE-576)064448398</subfield><subfield code="x">1434-6001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1140/epja/s10050-021-00501-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Tawfik, Abdel Nasser |
spellingShingle |
Tawfik, Abdel Nasser ddc 530 Chiral magnetic properties of QCD phase-diagram |
authorStr |
Tawfik, Abdel Nasser |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)239430387 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1434-6001 |
topic_title |
530 VZ Chiral magnetic properties of QCD phase-diagram |
topic |
ddc 530 |
topic_unstemmed |
ddc 530 |
topic_browse |
ddc 530 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The European physical journal / A |
hierarchy_parent_id |
239430387 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
The European physical journal / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)239430387 (DE-600)1413603-X (DE-576)064448398 |
title |
Chiral magnetic properties of QCD phase-diagram |
ctrlnum |
(DE-627)OLC2126190579 (DE-He213)s10050-021-00501-z-p |
title_full |
Chiral magnetic properties of QCD phase-diagram |
author_sort |
Tawfik, Abdel Nasser |
journal |
The European physical journal / A |
journalStr |
The European physical journal / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Tawfik, Abdel Nasser Diab, Abdel Magied |
container_volume |
57 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Tawfik, Abdel Nasser |
doi_str_mv |
10.1140/epja/s10050-021-00501-z |
normlink |
(ORCID)0000-0002-1679-0225 |
normlink_prefix_str_mv |
(orcid)0000-0002-1679-0225 |
dewey-full |
530 |
title_sort |
chiral magnetic properties of qcd phase-diagram |
title_auth |
Chiral magnetic properties of QCD phase-diagram |
abstract |
Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. © The Author(s) 2021 |
abstractGer |
Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. © The Author(s) 2021 |
abstract_unstemmed |
Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY |
container_issue |
6 |
title_short |
Chiral magnetic properties of QCD phase-diagram |
url |
https://doi.org/10.1140/epja/s10050-021-00501-z |
remote_bool |
false |
author2 |
Diab, Abdel Magied |
author2Str |
Diab, Abdel Magied |
ppnlink |
239430387 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1140/epja/s10050-021-00501-z |
up_date |
2024-07-04T06:13:20.265Z |
_version_ |
1803627895463084032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126190579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505120355.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epja/s10050-021-00501-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126190579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10050-021-00501-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tawfik, Abdel Nasser</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1679-0225</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chiral magnetic properties of QCD phase-diagram</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Diab, Abdel Magied</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal / A</subfield><subfield code="d">Springer Berlin Heidelberg, 1998</subfield><subfield code="g">57(2021), 6 vom: Juni</subfield><subfield code="w">(DE-627)239430387</subfield><subfield code="w">(DE-600)1413603-X</subfield><subfield code="w">(DE-576)064448398</subfield><subfield code="x">1434-6001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1140/epja/s10050-021-00501-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4026213 |