Memristor-based BAM circuit implementation for image associative memory and filling-in
Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memrist...
Ausführliche Beschreibung
Autor*in: |
Yang, Zijia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 33(2021), 13 vom: 08. Jan., Seite 7929-7942 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2021 ; number:13 ; day:08 ; month:01 ; pages:7929-7942 |
Links: |
---|
DOI / URN: |
10.1007/s00521-020-05538-7 |
---|
Katalog-ID: |
OLC2126243796 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2126243796 | ||
003 | DE-627 | ||
005 | 20230505113154.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-020-05538-7 |2 doi | |
035 | |a (DE-627)OLC2126243796 | ||
035 | |a (DE-He213)s00521-020-05538-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Yang, Zijia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Memristor-based BAM circuit implementation for image associative memory and filling-in |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2021 | ||
520 | |a Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. | ||
650 | 4 | |a Memristors | |
650 | 4 | |a Bidirectional associative memory | |
650 | 4 | |a Associative memory | |
650 | 4 | |a Filling-in | |
700 | 1 | |a Wang, Xiaoping |0 (orcid)0000-0002-4909-8286 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 33(2021), 13 vom: 08. Jan., Seite 7929-7942 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2021 |g number:13 |g day:08 |g month:01 |g pages:7929-7942 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-020-05538-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 33 |j 2021 |e 13 |b 08 |c 01 |h 7929-7942 |
author_variant |
z y zy x w xw |
---|---|
matchkey_str |
article:09410643:2021----::ersobsdacrutmlmnainoiaesoit |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00521-020-05538-7 doi (DE-627)OLC2126243796 (DE-He213)s00521-020-05538-7-p DE-627 ger DE-627 rakwb eng 004 VZ Yang, Zijia verfasserin aut Memristor-based BAM circuit implementation for image associative memory and filling-in 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. Memristors Bidirectional associative memory Associative memory Filling-in Wang, Xiaoping (orcid)0000-0002-4909-8286 aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 13 vom: 08. Jan., Seite 7929-7942 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 https://doi.org/10.1007/s00521-020-05538-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 13 08 01 7929-7942 |
spelling |
10.1007/s00521-020-05538-7 doi (DE-627)OLC2126243796 (DE-He213)s00521-020-05538-7-p DE-627 ger DE-627 rakwb eng 004 VZ Yang, Zijia verfasserin aut Memristor-based BAM circuit implementation for image associative memory and filling-in 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. Memristors Bidirectional associative memory Associative memory Filling-in Wang, Xiaoping (orcid)0000-0002-4909-8286 aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 13 vom: 08. Jan., Seite 7929-7942 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 https://doi.org/10.1007/s00521-020-05538-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 13 08 01 7929-7942 |
allfields_unstemmed |
10.1007/s00521-020-05538-7 doi (DE-627)OLC2126243796 (DE-He213)s00521-020-05538-7-p DE-627 ger DE-627 rakwb eng 004 VZ Yang, Zijia verfasserin aut Memristor-based BAM circuit implementation for image associative memory and filling-in 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. Memristors Bidirectional associative memory Associative memory Filling-in Wang, Xiaoping (orcid)0000-0002-4909-8286 aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 13 vom: 08. Jan., Seite 7929-7942 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 https://doi.org/10.1007/s00521-020-05538-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 13 08 01 7929-7942 |
allfieldsGer |
10.1007/s00521-020-05538-7 doi (DE-627)OLC2126243796 (DE-He213)s00521-020-05538-7-p DE-627 ger DE-627 rakwb eng 004 VZ Yang, Zijia verfasserin aut Memristor-based BAM circuit implementation for image associative memory and filling-in 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. Memristors Bidirectional associative memory Associative memory Filling-in Wang, Xiaoping (orcid)0000-0002-4909-8286 aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 13 vom: 08. Jan., Seite 7929-7942 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 https://doi.org/10.1007/s00521-020-05538-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 13 08 01 7929-7942 |
allfieldsSound |
10.1007/s00521-020-05538-7 doi (DE-627)OLC2126243796 (DE-He213)s00521-020-05538-7-p DE-627 ger DE-627 rakwb eng 004 VZ Yang, Zijia verfasserin aut Memristor-based BAM circuit implementation for image associative memory and filling-in 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. Memristors Bidirectional associative memory Associative memory Filling-in Wang, Xiaoping (orcid)0000-0002-4909-8286 aut Enthalten in Neural computing & applications Springer London, 1993 33(2021), 13 vom: 08. Jan., Seite 7929-7942 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 https://doi.org/10.1007/s00521-020-05538-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 33 2021 13 08 01 7929-7942 |
language |
English |
source |
Enthalten in Neural computing & applications 33(2021), 13 vom: 08. Jan., Seite 7929-7942 volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 |
sourceStr |
Enthalten in Neural computing & applications 33(2021), 13 vom: 08. Jan., Seite 7929-7942 volume:33 year:2021 number:13 day:08 month:01 pages:7929-7942 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Memristors Bidirectional associative memory Associative memory Filling-in |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Yang, Zijia @@aut@@ Wang, Xiaoping @@aut@@ |
publishDateDaySort_date |
2021-01-08T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC2126243796 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126243796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505113154.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-020-05538-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126243796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-020-05538-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Zijia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Memristor-based BAM circuit implementation for image associative memory and filling-in</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memristors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bidirectional associative memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filling-in</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoping</subfield><subfield code="0">(orcid)0000-0002-4909-8286</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">33(2021), 13 vom: 08. Jan., Seite 7929-7942</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:13</subfield><subfield code="g">day:08</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:7929-7942</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-020-05538-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2021</subfield><subfield code="e">13</subfield><subfield code="b">08</subfield><subfield code="c">01</subfield><subfield code="h">7929-7942</subfield></datafield></record></collection>
|
author |
Yang, Zijia |
spellingShingle |
Yang, Zijia ddc 004 misc Memristors misc Bidirectional associative memory misc Associative memory misc Filling-in Memristor-based BAM circuit implementation for image associative memory and filling-in |
authorStr |
Yang, Zijia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ Memristor-based BAM circuit implementation for image associative memory and filling-in Memristors Bidirectional associative memory Associative memory Filling-in |
topic |
ddc 004 misc Memristors misc Bidirectional associative memory misc Associative memory misc Filling-in |
topic_unstemmed |
ddc 004 misc Memristors misc Bidirectional associative memory misc Associative memory misc Filling-in |
topic_browse |
ddc 004 misc Memristors misc Bidirectional associative memory misc Associative memory misc Filling-in |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
Memristor-based BAM circuit implementation for image associative memory and filling-in |
ctrlnum |
(DE-627)OLC2126243796 (DE-He213)s00521-020-05538-7-p |
title_full |
Memristor-based BAM circuit implementation for image associative memory and filling-in |
author_sort |
Yang, Zijia |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
7929 |
author_browse |
Yang, Zijia Wang, Xiaoping |
container_volume |
33 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Yang, Zijia |
doi_str_mv |
10.1007/s00521-020-05538-7 |
normlink |
(ORCID)0000-0002-4909-8286 |
normlink_prefix_str_mv |
(orcid)0000-0002-4909-8286 |
dewey-full |
004 |
title_sort |
memristor-based bam circuit implementation for image associative memory and filling-in |
title_auth |
Memristor-based BAM circuit implementation for image associative memory and filling-in |
abstract |
Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. © Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstractGer |
Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. © Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed. © Springer-Verlag London Ltd., part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
13 |
title_short |
Memristor-based BAM circuit implementation for image associative memory and filling-in |
url |
https://doi.org/10.1007/s00521-020-05538-7 |
remote_bool |
false |
author2 |
Wang, Xiaoping |
author2Str |
Wang, Xiaoping |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-020-05538-7 |
up_date |
2024-07-04T06:24:21.496Z |
_version_ |
1803628588823478272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126243796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505113154.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-020-05538-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126243796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-020-05538-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Zijia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Memristor-based BAM circuit implementation for image associative memory and filling-in</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Associative memory and filling-in are two essential functions of the human brain. To implement these two brain-inspired functions in hardware, we proposed a memristor-based bidirectional associative memory (BAM) circuit in this paper. This circuit combines an online algorithm with a memristor array adjustment process, thus makes the circuit more universal for various tasks. The proposed circuit is constructed out of memristive synaptic circuits, IN modules and ACT modules. The memristive synaptic circuits utilize memristor arrays to represent weight matrix and operate corresponding operations hence make computing-in-memory and process information in parallel, which simplifies the complexity of circuit and improves the processing speed. The IN modules employ transistors as switches to choose the input layer hence can get initial information flow bidirectionally. The ACT modules perform activation function and can output continuous arbitrary real numbers. Thereby, both binary and gray-scale images can be tested in the proposed circuit. In addition to the hetero-association and filling-in results given in detail, the retrieval rates of the proposed circuit with the impact of different degrees of noise and the number of stored patterns are also evaluated and compared with software-based BAM. The simulation has experimented via MATLAB and PSpice, and the corresponding results show a remarkable performance of the proposed circuit. The influence of memristor’s stuck-at-fault is also considered. In comparison with software-based BAM and similar memristor-based neural network circuit, the proposed circuit performs better in processing speed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memristors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bidirectional associative memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative memory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filling-in</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoping</subfield><subfield code="0">(orcid)0000-0002-4909-8286</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">33(2021), 13 vom: 08. Jan., Seite 7929-7942</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:13</subfield><subfield code="g">day:08</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:7929-7942</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-020-05538-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2021</subfield><subfield code="e">13</subfield><subfield code="b">08</subfield><subfield code="c">01</subfield><subfield code="h">7929-7942</subfield></datafield></record></collection>
|
score |
7.4012194 |