Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries
Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the...
Ausführliche Beschreibung
Autor*in: |
He, Jiajun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: JOM - Springer US, 1989, 73(2021), 8 vom: 09. Juni, Seite 2516-2524 |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2021 ; number:8 ; day:09 ; month:06 ; pages:2516-2524 |
Links: |
---|
DOI / URN: |
10.1007/s11837-021-04752-5 |
---|
Katalog-ID: |
OLC2126793788 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2126793788 | ||
003 | DE-627 | ||
005 | 20230505121448.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11837-021-04752-5 |2 doi | |
035 | |a (DE-627)OLC2126793788 | ||
035 | |a (DE-He213)s11837-021-04752-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 19,1 |2 ssgn | ||
100 | 1 | |a He, Jiajun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2021 | ||
520 | |a Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. | ||
700 | 1 | |a Gao, Zan |4 aut | |
700 | 1 | |a Li, Xiaodong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t JOM |d Springer US, 1989 |g 73(2021), 8 vom: 09. Juni, Seite 2516-2524 |w (DE-627)130823368 |w (DE-600)1015034-1 |w (DE-576)023064358 |x 0148-6608 |7 nnns |
773 | 1 | 8 | |g volume:73 |g year:2021 |g number:8 |g day:09 |g month:06 |g pages:2516-2524 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11837-021-04752-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_2014 | ||
951 | |a AR | ||
952 | |d 73 |j 2021 |e 8 |b 09 |c 06 |h 2516-2524 |
author_variant |
j h jh z g zg x l xl |
---|---|
matchkey_str |
article:01486608:2021----::esdrvdabnaoueotdeaaofrihefracl |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11837-021-04752-5 doi (DE-627)OLC2126793788 (DE-He213)s11837-021-04752-5-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn He, Jiajun verfasserin aut Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2021 Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. Gao, Zan aut Li, Xiaodong aut Enthalten in JOM Springer US, 1989 73(2021), 8 vom: 09. Juni, Seite 2516-2524 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 https://doi.org/10.1007/s11837-021-04752-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_2014 AR 73 2021 8 09 06 2516-2524 |
spelling |
10.1007/s11837-021-04752-5 doi (DE-627)OLC2126793788 (DE-He213)s11837-021-04752-5-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn He, Jiajun verfasserin aut Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2021 Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. Gao, Zan aut Li, Xiaodong aut Enthalten in JOM Springer US, 1989 73(2021), 8 vom: 09. Juni, Seite 2516-2524 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 https://doi.org/10.1007/s11837-021-04752-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_2014 AR 73 2021 8 09 06 2516-2524 |
allfields_unstemmed |
10.1007/s11837-021-04752-5 doi (DE-627)OLC2126793788 (DE-He213)s11837-021-04752-5-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn He, Jiajun verfasserin aut Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2021 Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. Gao, Zan aut Li, Xiaodong aut Enthalten in JOM Springer US, 1989 73(2021), 8 vom: 09. Juni, Seite 2516-2524 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 https://doi.org/10.1007/s11837-021-04752-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_2014 AR 73 2021 8 09 06 2516-2524 |
allfieldsGer |
10.1007/s11837-021-04752-5 doi (DE-627)OLC2126793788 (DE-He213)s11837-021-04752-5-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn He, Jiajun verfasserin aut Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2021 Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. Gao, Zan aut Li, Xiaodong aut Enthalten in JOM Springer US, 1989 73(2021), 8 vom: 09. Juni, Seite 2516-2524 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 https://doi.org/10.1007/s11837-021-04752-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_2014 AR 73 2021 8 09 06 2516-2524 |
allfieldsSound |
10.1007/s11837-021-04752-5 doi (DE-627)OLC2126793788 (DE-He213)s11837-021-04752-5-p DE-627 ger DE-627 rakwb eng 670 VZ 19,1 ssgn He, Jiajun verfasserin aut Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2021 Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. Gao, Zan aut Li, Xiaodong aut Enthalten in JOM Springer US, 1989 73(2021), 8 vom: 09. Juni, Seite 2516-2524 (DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 0148-6608 nnns volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 https://doi.org/10.1007/s11837-021-04752-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_2014 AR 73 2021 8 09 06 2516-2524 |
language |
English |
source |
Enthalten in JOM 73(2021), 8 vom: 09. Juni, Seite 2516-2524 volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 |
sourceStr |
Enthalten in JOM 73(2021), 8 vom: 09. Juni, Seite 2516-2524 volume:73 year:2021 number:8 day:09 month:06 pages:2516-2524 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
JOM |
authorswithroles_txt_mv |
He, Jiajun @@aut@@ Gao, Zan @@aut@@ Li, Xiaodong @@aut@@ |
publishDateDaySort_date |
2021-06-09T00:00:00Z |
hierarchy_top_id |
130823368 |
dewey-sort |
3670 |
id |
OLC2126793788 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126793788</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505121448.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11837-021-04752-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126793788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11837-021-04752-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Jiajun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Zan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">JOM</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">73(2021), 8 vom: 09. Juni, Seite 2516-2524</subfield><subfield code="w">(DE-627)130823368</subfield><subfield code="w">(DE-600)1015034-1</subfield><subfield code="w">(DE-576)023064358</subfield><subfield code="x">0148-6608</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:09</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2516-2524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11837-021-04752-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">09</subfield><subfield code="c">06</subfield><subfield code="h">2516-2524</subfield></datafield></record></collection>
|
author |
He, Jiajun |
spellingShingle |
He, Jiajun ddc 670 ssgn 19,1 Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
authorStr |
He, Jiajun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130823368 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0148-6608 |
topic_title |
670 VZ 19,1 ssgn Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
topic |
ddc 670 ssgn 19,1 |
topic_unstemmed |
ddc 670 ssgn 19,1 |
topic_browse |
ddc 670 ssgn 19,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
JOM |
hierarchy_parent_id |
130823368 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
JOM |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130823368 (DE-600)1015034-1 (DE-576)023064358 |
title |
Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
ctrlnum |
(DE-627)OLC2126793788 (DE-He213)s11837-021-04752-5-p |
title_full |
Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
author_sort |
He, Jiajun |
journal |
JOM |
journalStr |
JOM |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2516 |
author_browse |
He, Jiajun Gao, Zan Li, Xiaodong |
container_volume |
73 |
class |
670 VZ 19,1 ssgn |
format_se |
Aufsätze |
author-letter |
He, Jiajun |
doi_str_mv |
10.1007/s11837-021-04752-5 |
dewey-full |
670 |
title_sort |
yeast-derived carbon nanotube-coated separator for high performance lithium-sulfur batteries |
title_auth |
Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
abstract |
Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. © The Minerals, Metals & Materials Society 2021 |
abstractGer |
Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. © The Minerals, Metals & Materials Society 2021 |
abstract_unstemmed |
Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density. © The Minerals, Metals & Materials Society 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_2014 |
container_issue |
8 |
title_short |
Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries |
url |
https://doi.org/10.1007/s11837-021-04752-5 |
remote_bool |
false |
author2 |
Gao, Zan Li, Xiaodong |
author2Str |
Gao, Zan Li, Xiaodong |
ppnlink |
130823368 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11837-021-04752-5 |
up_date |
2024-07-04T08:26:04.753Z |
_version_ |
1803636246848733184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126793788</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505121448.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11837-021-04752-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126793788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11837-021-04752-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">19,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Jiajun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Lithium-sulfur (Li-S) battery is an appealing energy storage technology because of its superior theoretical energy density, natural friendliness and low cost over Li-ion battery. However, Li-S batteries often suffer from fast capacity decay, low energy density and short lifespan due to the shuttle effect from polysulfides. Hybridizing sulfur with carbonaceous materials has been demonstrated effective in solving these challenges and thus improving Li-S battery performance. In this work, yeast as a low-cost, natural and renewable catalyst was used to grow carbon nanotubes (CNTs), which were then coated on the separator in a Li-S battery to suppress the shuttle effect of polysulfides. The Li-S cell with the CNT-coated separator exhibited significantly improved performance at high current density with an initial high specific capacity of 980 mA h $ g^{−1} $ and a well-retained specific capacity of ~ 450 mA h $ g^{−1} $ after 850 cycles at a high current density.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Zan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">JOM</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">73(2021), 8 vom: 09. Juni, Seite 2516-2524</subfield><subfield code="w">(DE-627)130823368</subfield><subfield code="w">(DE-600)1015034-1</subfield><subfield code="w">(DE-576)023064358</subfield><subfield code="x">0148-6608</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:09</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2516-2524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11837-021-04752-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">09</subfield><subfield code="c">06</subfield><subfield code="h">2516-2524</subfield></datafield></record></collection>
|
score |
7.400695 |