Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $
CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated w...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jiali [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Catalysis letters - Springer US, 1988, 151(2021), 9 vom: 07. Jan., Seite 2502-2512 |
---|---|
Übergeordnetes Werk: |
volume:151 ; year:2021 ; number:9 ; day:07 ; month:01 ; pages:2502-2512 |
Links: |
---|
DOI / URN: |
10.1007/s10562-020-03515-2 |
---|
Katalog-ID: |
OLC2126971821 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | OLC2126971821 | ||
003 | DE-627 | ||
005 | 20230505123202.0 | ||
007 | tu | ||
008 | 230505s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10562-020-03515-2 |2 doi | |
035 | |a (DE-627)OLC2126971821 | ||
035 | |a (DE-He213)s10562-020-03515-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 660 |q VZ |
084 | |a VA 2890 |q VZ |2 rvk | ||
100 | 1 | |a Zhang, Jiali |e verfasserin |4 aut | |
245 | 1 | 9 | |a Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 | ||
520 | |a CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract | ||
650 | 4 | |a NH | |
650 | 4 | |a -SCR | |
650 | 4 | |a Catalyst | |
650 | 4 | |a Core–shell nanostructure | |
650 | 4 | |a Nanorods | |
650 | 4 | |a CuO | |
700 | 1 | |a Tian, Hua |4 aut | |
700 | 1 | |a Yu, Yanke |4 aut | |
700 | 1 | |a Jiang, Zeyu |4 aut | |
700 | 1 | |a Ma, Mudi |4 aut | |
700 | 1 | |a He, Chi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Catalysis letters |d Springer US, 1988 |g 151(2021), 9 vom: 07. Jan., Seite 2502-2512 |w (DE-627)130436550 |w (DE-600)644234-1 |w (DE-576)025720724 |x 1011-372X |7 nnns |
773 | 1 | 8 | |g volume:151 |g year:2021 |g number:9 |g day:07 |g month:01 |g pages:2502-2512 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10562-020-03515-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
936 | r | v | |a VA 2890 |
951 | |a AR | ||
952 | |d 151 |j 2021 |e 9 |b 07 |c 01 |h 2502-2512 |
author_variant |
j z jz h t ht y y yy z j zj m m mm c h ch |
---|---|
matchkey_str |
article:1011372X:2021----::oecoi_crselaotutrctlsfreetvctlt |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10562-020-03515-2 doi (DE-627)OLC2126971821 (DE-He213)s10562-020-03515-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Zhang, Jiali verfasserin aut Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract NH -SCR Catalyst Core–shell nanostructure Nanorods CuO Tian, Hua aut Yu, Yanke aut Jiang, Zeyu aut Ma, Mudi aut He, Chi aut Enthalten in Catalysis letters Springer US, 1988 151(2021), 9 vom: 07. Jan., Seite 2502-2512 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 https://doi.org/10.1007/s10562-020-03515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2021 9 07 01 2502-2512 |
spelling |
10.1007/s10562-020-03515-2 doi (DE-627)OLC2126971821 (DE-He213)s10562-020-03515-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Zhang, Jiali verfasserin aut Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract NH -SCR Catalyst Core–shell nanostructure Nanorods CuO Tian, Hua aut Yu, Yanke aut Jiang, Zeyu aut Ma, Mudi aut He, Chi aut Enthalten in Catalysis letters Springer US, 1988 151(2021), 9 vom: 07. Jan., Seite 2502-2512 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 https://doi.org/10.1007/s10562-020-03515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2021 9 07 01 2502-2512 |
allfields_unstemmed |
10.1007/s10562-020-03515-2 doi (DE-627)OLC2126971821 (DE-He213)s10562-020-03515-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Zhang, Jiali verfasserin aut Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract NH -SCR Catalyst Core–shell nanostructure Nanorods CuO Tian, Hua aut Yu, Yanke aut Jiang, Zeyu aut Ma, Mudi aut He, Chi aut Enthalten in Catalysis letters Springer US, 1988 151(2021), 9 vom: 07. Jan., Seite 2502-2512 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 https://doi.org/10.1007/s10562-020-03515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2021 9 07 01 2502-2512 |
allfieldsGer |
10.1007/s10562-020-03515-2 doi (DE-627)OLC2126971821 (DE-He213)s10562-020-03515-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Zhang, Jiali verfasserin aut Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract NH -SCR Catalyst Core–shell nanostructure Nanorods CuO Tian, Hua aut Yu, Yanke aut Jiang, Zeyu aut Ma, Mudi aut He, Chi aut Enthalten in Catalysis letters Springer US, 1988 151(2021), 9 vom: 07. Jan., Seite 2502-2512 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 https://doi.org/10.1007/s10562-020-03515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2021 9 07 01 2502-2512 |
allfieldsSound |
10.1007/s10562-020-03515-2 doi (DE-627)OLC2126971821 (DE-He213)s10562-020-03515-2-p DE-627 ger DE-627 rakwb eng 540 660 VZ VA 2890 VZ rvk Zhang, Jiali verfasserin aut Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract NH -SCR Catalyst Core–shell nanostructure Nanorods CuO Tian, Hua aut Yu, Yanke aut Jiang, Zeyu aut Ma, Mudi aut He, Chi aut Enthalten in Catalysis letters Springer US, 1988 151(2021), 9 vom: 07. Jan., Seite 2502-2512 (DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 1011-372X nnns volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 https://doi.org/10.1007/s10562-020-03515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE VA 2890 AR 151 2021 9 07 01 2502-2512 |
language |
English |
source |
Enthalten in Catalysis letters 151(2021), 9 vom: 07. Jan., Seite 2502-2512 volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 |
sourceStr |
Enthalten in Catalysis letters 151(2021), 9 vom: 07. Jan., Seite 2502-2512 volume:151 year:2021 number:9 day:07 month:01 pages:2502-2512 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
NH -SCR Catalyst Core–shell nanostructure Nanorods CuO |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Catalysis letters |
authorswithroles_txt_mv |
Zhang, Jiali @@aut@@ Tian, Hua @@aut@@ Yu, Yanke @@aut@@ Jiang, Zeyu @@aut@@ Ma, Mudi @@aut@@ He, Chi @@aut@@ |
publishDateDaySort_date |
2021-01-07T00:00:00Z |
hierarchy_top_id |
130436550 |
dewey-sort |
3540 |
id |
OLC2126971821 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126971821</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505123202.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10562-020-03515-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126971821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10562-020-03515-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 2890</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="9"><subfield code="a">Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NH</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-SCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core–shell nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanorods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CuO</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Hua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yanke</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Zeyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Mudi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Chi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Catalysis letters</subfield><subfield code="d">Springer US, 1988</subfield><subfield code="g">151(2021), 9 vom: 07. Jan., Seite 2502-2512</subfield><subfield code="w">(DE-627)130436550</subfield><subfield code="w">(DE-600)644234-1</subfield><subfield code="w">(DE-576)025720724</subfield><subfield code="x">1011-372X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9</subfield><subfield code="g">day:07</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2502-2512</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10562-020-03515-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 2890</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2021</subfield><subfield code="e">9</subfield><subfield code="b">07</subfield><subfield code="c">01</subfield><subfield code="h">2502-2512</subfield></datafield></record></collection>
|
author |
Zhang, Jiali |
spellingShingle |
Zhang, Jiali ddc 540 rvk VA 2890 misc NH misc -SCR misc Catalyst misc Core–shell nanostructure misc Nanorods misc CuO Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ |
authorStr |
Zhang, Jiali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130436550 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1011-372X |
topic_title |
540 660 VZ VA 2890 VZ rvk Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ NH -SCR Catalyst Core–shell nanostructure Nanorods CuO |
topic |
ddc 540 rvk VA 2890 misc NH misc -SCR misc Catalyst misc Core–shell nanostructure misc Nanorods misc CuO |
topic_unstemmed |
ddc 540 rvk VA 2890 misc NH misc -SCR misc Catalyst misc Core–shell nanostructure misc Nanorods misc CuO |
topic_browse |
ddc 540 rvk VA 2890 misc NH misc -SCR misc Catalyst misc Core–shell nanostructure misc Nanorods misc CuO |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Catalysis letters |
hierarchy_parent_id |
130436550 |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Catalysis letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130436550 (DE-600)644234-1 (DE-576)025720724 |
title |
Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ |
ctrlnum |
(DE-627)OLC2126971821 (DE-He213)s10562-020-03515-2-p |
title_full |
Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ |
author_sort |
Zhang, Jiali |
journal |
Catalysis letters |
journalStr |
Catalysis letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2502 |
author_browse |
Zhang, Jiali Tian, Hua Yu, Yanke Jiang, Zeyu Ma, Mudi He, Chi |
container_volume |
151 |
class |
540 660 VZ VA 2890 VZ rvk |
format_se |
Aufsätze |
author-letter |
Zhang, Jiali |
doi_str_mv |
10.1007/s10562-020-03515-2 |
dewey-full |
540 660 |
title_sort |
$ tio_{2} $ core–shell nanostructure catalyst for selective catalytic reduction of $ no_{x} $ with $ nh_{3} $ |
title_auth |
Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ |
abstract |
CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
abstractGer |
CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
abstract_unstemmed |
CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE |
container_issue |
9 |
title_short |
Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $ |
url |
https://doi.org/10.1007/s10562-020-03515-2 |
remote_bool |
false |
author2 |
Tian, Hua Yu, Yanke Jiang, Zeyu Ma, Mudi He, Chi |
author2Str |
Tian, Hua Yu, Yanke Jiang, Zeyu Ma, Mudi He, Chi |
ppnlink |
130436550 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10562-020-03515-2 |
up_date |
2024-07-04T09:07:05.579Z |
_version_ |
1803638827206574080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">OLC2126971821</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505123202.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230505s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10562-020-03515-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2126971821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10562-020-03515-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 2890</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="9"><subfield code="a">Novel CuO$ TiO_{2} $ Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of $ NO_{x} $ with $ NH_{3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">CuO$ TiO_{2} $ core–shell nanostructure catalyst with CuO core and $ TiO_{2} $ shell was prepared by a two-step method and then used in $ NH_{3} $-SCR reaction. FE-SEM, TEM and element mapping were used to investigate the morphologies of the sample. Their results indicated CuO nanorods were coated with $ TiO_{2} $ and thus forming a core–shell nanostructure. According to the results of $ N_{2} $ adsorption–desorption, XRD, Raman, XPS, $ NH_{3} $-TPD, $ H_{2} $-TPR and in situ DRIFTS, the core–shell nanostructure would benefit the formation of better redox ability, more oxygen vacancies, more acid sites and abundant adsorbed $ NO_{x} $ species on the catalyst. Thus, the core–shell nanostructure catalyst presented significantly higher activity than pure CuO and $ TiO_{2} $. $ NH_{3} $-SCR reaction on CuO@$ TiO_{2} $ core–shell catalyst should follow both Eley–Rideal (E-R) mechanism and Langmuir-Hinshewood (L–H) mechanism. These findings may promote the development of the new effective non-vanadium-based SCR catalysts. Graphic Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NH</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-SCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core–shell nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanorods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CuO</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Hua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yanke</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Zeyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Mudi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Chi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Catalysis letters</subfield><subfield code="d">Springer US, 1988</subfield><subfield code="g">151(2021), 9 vom: 07. Jan., Seite 2502-2512</subfield><subfield code="w">(DE-627)130436550</subfield><subfield code="w">(DE-600)644234-1</subfield><subfield code="w">(DE-576)025720724</subfield><subfield code="x">1011-372X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:151</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9</subfield><subfield code="g">day:07</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:2502-2512</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10562-020-03515-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 2890</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">151</subfield><subfield code="j">2021</subfield><subfield code="e">9</subfield><subfield code="b">07</subfield><subfield code="c">01</subfield><subfield code="h">2502-2512</subfield></datafield></record></collection>
|
score |
7.400509 |